On notion of arbitrage and robust pricing and hedging of variance swaps

Jan Obľój
University of Oxford

based on joint works with
Alexander Cox and with Mark Davis and Vimal Raval

Columbia–Oxford Risk Summit 2010
New York, 28–29 June 2010
Typically, when modelling, one proceeds as follows:

- Write down a plausible and well behaved model.
- Compute prices of (liquid) financial instruments as function of model parameters.
- Calibrate the model: chose the parameters to match the prices already observed in the market.
- Use it: sell and hedge new derivatives.

This approach has important drawbacks:

- It is exposed to model risk which may be hard to quantify.
- Models are *re-calibrated* daily: theoretically inconsistent.
- Inevitably, it ignores some information present in the market.

We want to develop a more robust approach.
Typically, when modelling, one proceeds as follows:

- Write down a plausible and well behaved model.
- Compute prices of (liquid) financial instruments as function of model parameters.
- Calibrate the model: chose the parameters to match the prices already observed in the market.
- Use it: sell and hedge new derivatives.

This approach has important drawbacks:

- It is exposed to model risk which may be hard to quantify.
- Models are \textit{re-calibrated} daily: theoretically inconsistent.
- Inevitably, it ignores some information present in the market.

We want to develop a more \textit{robust} approach.
Typically, when modelling, one proceeds as follows:

- Write down a plausible and well behaved model.
- Compute prices of (liquid) financial instruments as function of model parameters.
- Calibrate the model: chose the parameters to match the prices already observed in the market.
- Use it: sell and hedge new derivatives.

This approach has important drawbacks:

- It is exposed to model risk which may be hard to quantify.
- Models are *re-calibrated* daily: theoretically inconsistent.
- Inevitably, it ignores some information present in the market.

We want to develop a more robust approach.
Typically, when modelling, one proceeds as follows:

- Write down a plausible and well behaved model.
- Compute prices of (liquid) financial instruments as function of model parameters.
- Calibrate the model: chose the parameters to match the prices already observed in the market.
- Use it: sell and hedge new derivatives.

This approach has important drawbacks:

- It is exposed to model risk which may be hard to quantify.
- Models are *re-calibrated* daily: theoretically inconsistent.
- Inevitably, it ignores some information present in the market.

We want to develop a more *robust* approach.
The general challenge for robust approach is as follows:

- **Q1: robust pricing**
 Start with market information: prices of some instruments. Assume it admits no arbitrage ⇐⇒ could come from a model. Given a new product, determine its feasible price, i.e. a price which does not introduce any arbitrage in this market.

- **Q2: robust hedging**
 Furthermore, derive best super-/sub- hedging strategies which always work.

Thus we want to use the information in the market to make statements which are model-independent.

Later in this talk we will be concerned with pricing & hedging of (weighted) variance swaps, given market prices for finite family of co-maturing puts.
The general challenge for robust approach is as follows:

- **Q1: robust pricing**
 Start with market information: prices of some instruments. Assume it admits no arbitrage \iff could come from a model. Given a new product, determine its feasible price, i.e. a price which does not introduce any arbitrage in this market.

- **Q2: robust hedging**
 Furthermore, derive best super-/sub- hedging strategies which always work.

Thus we want to use the information in the market to make statements which are model-independent.

Later in this talk we will be concerned with pricing & hedging of (weighted) variance swaps, given market prices for finite family of co-maturing puts.
The general challenge for robust approach is as follows:

- **Q1: robust pricing**
 Start with market information: prices of some instruments. Assume it admits no arbitrage \iff could come from a model. Given a new product, determine its feasible price, i.e. a price which does not introduce any arbitrage in this market.

- **Q2: robust hedging**
 Furthermore, derive best super-/sub- hedging strategies which always work.

Thus we want to use the information in the market to make statements which are model-independent.

Later in this talk we will be concerned with pricing & hedging of (weighted) variance swaps, given market prices for finite family of co-maturing puts.
The general challenge for robust approach is as follows:

- **Q1: robust pricing**
 Start with market information: prices of some instruments. Assume it admits no arbitrage \iff could come from a model. Given a new product, determine its feasible price, i.e. a price which does not introduce any arbitrage in this market.

- **Q2: robust hedging**
 Furthermore, derive best super-/sub- hedging strategies which always work.

Thus we want to use the information in the market to make statements which are model-independent.

Later in this talk we will be concerned with pricing & hedging of (weighted) variance swaps, given market prices for finite family of co-maturing puts.
1 Motivating questions and FTAP with market input
 - Classical vs robust modelling framework
 - General setup and different notions of arbitrage
 - Towards FTAP with market input

2 Weighted variance swaps
 - Standing assumptions
 - w-variance swaps and convex payoffs

3 Robust pricing and hedging of options with convex payoffs
 - Main results
 - Upper bound
 - Lower bound
We assume \((S_t : t \leq T)\) takes values in some functional space \(\mathcal{P}\). \(\mathcal{X}\) is a given set of traded assets, mappings from \(\mathcal{P}\) to \(\mathbb{R}\). On this set we have a **pricing operator** \(\mathcal{P}\) which acts linearly on \(\mathcal{X}\), \(\mathcal{P} : \text{Lin}(\mathcal{X}) \rightarrow \mathbb{R}\). \(\mathcal{P}X\) is the market price of \(X\).

Assume interest rates are deterministic, *here set to zero*: \(\mathcal{P}1 = 1\).

We say that there exists a \((\mathcal{P}, \mathcal{X})\)–market model if there is a model \((\Omega, \mathcal{F}, (\mathcal{F}_t), \mathcal{Q}, (S_t))\), \(S_t\) a \(\mathcal{Q}\)–martingale and \(\mathcal{P}X = \mathbb{E}_\mathcal{Q}[X], X \in \mathcal{X}\). We would like to have

\[
\mathcal{P} \text{ admits no arbitrage on } \mathcal{X} \iff \text{there exists a market model} \iff \{\mathcal{P}X\}_{X \in \mathcal{X}} \text{ satisfy some constraints}
\]

Typically we want to start with simpler \(\mathcal{X}\) and then consider \(\mathcal{X} \cup \{O_T\}\) for an exotic option \(O_T : \mathcal{P} \rightarrow \mathbb{R}\).
We assume \((S_t : t \leq T)\) takes values in some functional space \(\mathcal{P}\). \(\mathcal{X}\) is a given set of traded assets, mappings from \(\mathcal{P}\) to \(\mathbb{R}\). On this set we have a **pricing operator** \(\mathcal{P}\) which acts linearly on \(\mathcal{X}\), \(\mathcal{P} : \text{Lin}(\mathcal{X}) \to \mathbb{R}\). \(\mathcal{P}X\) is the market price of \(X\).

Assume interest rates are deterministic, *here set to zero*: \(\mathcal{P}1 = 1\).

We say that there exists a \((\mathcal{P}, \mathcal{X})\text{-market model}\) if there is a model \((\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{Q}, (S_t))\), \(S_t\) a \(\mathbb{Q}\)-martingale and \(\mathcal{P}X = \mathbb{E}^\mathbb{Q}[X]\), \(X \in \mathcal{X}\). We would like to have

\[
\mathcal{P}\text{ admits no arbitrage on } \mathcal{X} \iff \text{there exists a market model} \iff \{\mathcal{P}X\}_{X \in \mathcal{X}} \text{ satisfy some constraints}
\]

Typically we want to start with simpler \(\mathcal{X}\) and then consider \(\mathcal{X} \cup \{O_T\}\) for an exotic option \(O_T : \mathcal{P} \to \mathbb{R}\).
We assume \((S_t : t \leq T)\) takes values in some functional space \(\mathcal{P}\). \(\mathcal{X}\) is a given set of traded assets, mappings from \(\mathcal{P}\) to \(\mathbb{R}\). On this set we have a pricing operator \(\mathcal{P}\) which acts linearly on \(\mathcal{X}\),
\[\mathcal{P} : \text{Lin}(\mathcal{X}) \to \mathbb{R}. \]
\(\mathcal{P}X\) is the market price of \(X\).
Assume interest rates are deterministic, *here set to zero*: \(\mathcal{P}1 = 1\).

We say that there exists a \((\mathcal{P}, \mathcal{X})\)–market model if there is a model
\((\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{Q}, (S_t))\), \(S_t\) a \(\mathbb{Q}\)–martingale and \(\mathcal{P}X = \mathbb{E}^\mathbb{Q}[X], \]
\(X \in \mathcal{X}\). We would like to have

\[\mathcal{P} \text{ admits no arbitrage on } \mathcal{X} \iff \text{there exists a market model} \]
\[\iff \{\mathcal{P}X\}_{X \in \mathcal{X}} \text{ satisfy some constraints} \]

Typically we want to start with simpler \(\mathcal{X}\) and then consider
\(\mathcal{X} \cup \{O_T\}\) for an exotic option \(O_T : \mathcal{P} \to \mathbb{R}\).
We assume \((S_t : t \leq T)\) takes values in some functional space \(\mathcal{P}\). \(\mathcal{X}\) is a given set of traded assets, mappings from \(\mathcal{P}\) to \(\mathbb{R}\). On this set we have a **pricing operator** \(\mathcal{P}\) which acts linearly on \(\mathcal{X}\), \(\mathcal{P} : \text{Lin}(\mathcal{X}) \rightarrow \mathbb{R}\). \(\mathcal{P}X\) is the market price of \(X\).

Assume interest rates are deterministic, *here set to zero*: \(\mathcal{P}1 = 1\).

We say that there exists a \((\mathcal{P}, \mathcal{X})\)–market model if there is a model

\((\Omega, \mathcal{F}, (\mathcal{F}_t), Q, (S_t)), S_t\) a \(Q\)–martingale and \(\mathcal{P}X = E^Q[X]\), \(X \in \mathcal{X}\). We would like to have

\(\mathcal{P}\) admits **no arbitrage** on \(\mathcal{X}\) \(\iff\) there exists a market model

\(\iff\) \(\{\mathcal{P}X\}_{X \in \mathcal{X}}\) satisfy some constraints

Typically we want to start with simpler \(\mathcal{X}\) and then consider \(\mathcal{X} \cup \{O_T\}\) for an exotic option \(O_T : \mathcal{P} \rightarrow \mathbb{R}\).
Definition (Model–independent arbitrage)

We say that \mathcal{P} admits a model–independent arbitrage on \mathcal{X} if there exists $X \in \text{Lin}(\mathcal{X})$ with $X \geq 0$ and $\mathcal{P}X < 0$.
Definition (Model–independent arbitrage)

We say that \mathcal{P} admits a model–independent arbitrage on \mathcal{X} if there exists $X \in \text{Lin}(\mathcal{X})$ with $X \geq 0$ and $\mathcal{P}X < 0$.

This coarsest notion is typically sufficient to derive no–arbitrage bounds but not sufficient to give existence of a market model.
Definition (Model–independent arbitrage)

We say that \mathcal{P} admits a model–independent arbitrage on \mathcal{X} if there exists $X \in \text{Lin}(\mathcal{X})$ with $X \geq 0$ and $\mathcal{P}X < 0$.

Definition (Weak arbitrage (Davis & Hobson 2007))

We say that \mathcal{P} admits a weak arbitrage on \mathcal{X} if for any model, there exists $X \in \text{Lin}(\mathcal{X})$ with $\mathcal{P}X \leq 0$ but $\mathbb{Q}(X \geq 0) = 1$, $\mathbb{Q}(X > 0) > 0$.
Theorem (Davis and Hobson (2007))

Let $\mathcal{X} = \{1, (K_i - S_T)^+ : i = 1, \ldots n\}$. The following are equivalent

- P admits no WA on \mathcal{X}
- there exists a (P, \mathcal{X})-market model
- $p_i = P(K_i - S_t)^+ \geq (K_i - S_0)^+$ and the piecewise linear interpolation of the points $(0, 0), (K_1, p_1), \ldots, (K_{n'}, p_{n'})$ is increasing, convex and with slope strictly bounded by 1, where $n' = \inf\{i : p_i = (K_i - S_0)\} \wedge n$.

where $S_0 = 1$. Note that here $Q(S_T \geq k_{n'}) = 0$ in any market model.
Definition (Model–independent arbitrage)

We say that \mathcal{P} admits a model–independent arbitrage on \mathcal{X} if there exists $X \in \text{Lin}(\mathcal{X})$ with $X \geq 0$ and $\mathcal{P}X < 0$.

Definition (Weak arbitrage (Davis & Hobson 2007))

We say that \mathcal{P} admits a weak arbitrage on \mathcal{X} if for any model, there exists $X \in \text{Lin}(\mathcal{X})$ with $\mathcal{P}X \leq 0$ but $\mathcal{Q}(X \geq 0) = 1$, $\mathcal{Q}(X > 0) > 0$.

Definition (Weak free lunch with vanishing risk (Cox & O. 2009))

We say that \mathcal{P} admits a weak free lunch with vanishing risk on \mathcal{X} if there exists $X_n, Z \in \text{Lin}(\mathcal{X})$ such that $X_n \to X$ (pointwise on \mathcal{P}), $X_n \geq Z$, $X \geq 0$ and $\lim \mathcal{P}X_n < 0$.
Theorem (Cox and O. (2009))

Let $\mathcal{X} = \{1, (K - S_T)^+ : K \geq 0\}$. Then the following are equivalent:

1. \mathcal{P} admits no WFLVR on \mathcal{X}
2. there exists a $(\mathcal{P}, \mathcal{X})$-market model
3. $P(K) = \mathcal{P}(K - S_T)^+$ satisfies

 $P(K) \geq (K - S_0)^+$ is convex and non-decreasing, and $P(0) = 0$, $P'(K) \leq 1,$

 $P(K) - (K - S_0) \to 0$ as $K \to \infty,$

 \hspace{1cm} (1)

 When (1) holds but (2) fails \mathcal{P} admits no model-free arbitrage but a market model does not exist.

Similar thm for \mathcal{X} with digital double barrier options.
Towards general FTAP...

- \mathcal{H} is some functional space and \mathcal{P} is an element of its dual.
- Appropriate no-arbitrage condition is the one which ensures \mathcal{P} extends to a countably additive measure on \mathcal{B}.
- Boundary cases (weak arbitrages) correspond to \mathcal{P} being a bounded (finitely) additive measure.
- First step in Cassese (2008): FTAP (for bounded assets) with no probability measure, but with no market input.
- Work in progress...
Our standing assumptions are:

- Liquid market in underlying asset S_t, $t \in [0, T]$.
- No transaction costs.
- (S_t) has continuous paths.
- No interest rate volatility.
- Uniquely determined forward price F_T (e.g. deterministic dividend yield).
- Options are traded at time 0 at quoted prices. In this talk all options are European with the same exercise time T.

For this talk $r = q = 0$ so that $F_T = S_0$.
We want to develop robust pricing and hedging for weighed variance swaps. A w-weighted variance swap pays

$$V_w^T = \int_0^T w(S_u)d\langle\log S\rangle_u - k^w,$$

where swap rate k^w is set so that $PV_w^T = 0$. We take $w : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ with $w(s)/s^2$ locally integrable. Then, in any model,

$$\int_0^T w(S_u)d\langle\log S\rangle_u = 2\lambda_w(S_T) - 2\lambda_w(S_0) - 2\int_0^T \lambda'_w(S_u)dS_u \ a.s ,$$

where $\lambda''_w(s) = w(s)/s^2$.

We have three important examples:

1. **Realised variance swap**: $w \equiv 1$ and $\lambda_w(s) = -\log(s)$.
2. **Corridor variance swap**: $w(s) = 1_{(0,a)}(s)$ or $w(s) = 1_{(a,\infty)}(x)$, where $0 < a < \infty$ and $\lambda_w(s) = (-\log(\frac{s}{a}) + \frac{s}{a} - 1) w(s)$.
3. **Gamma swap**: $w(s) = s$ and $\lambda_w(s) = s \log(s) - s$.
We want to develop robust pricing and hedging for weighed variance swaps. A w-weighted variance swap pays

$$V_T^w = \int_0^T w(S_u) d\langle \log S \rangle_u - k^w,$$

where swap rate k^w is set so that $PV_T^w = 0$. We take $w : \mathbb{R}_+ \to \mathbb{R}_+$ with $w(s)/s^2$ locally integrable. Then, in any model,

$$\int_0^T w(S_u) d\langle \log S \rangle_u = 2\lambda_w(S_T) - 2\lambda_w(S_0) - 2 \int_0^T \lambda'_w(S_u) dS_u \text{ a.s.},$$

where $\lambda''_w(s) = w(s)/s^2$.

We have three important examples:

- Realised variance swap: $w \equiv 1$ and $\lambda_w(s) = -\log(s)$.
- Corridor variance swap: $w(s) = 1_{(0,a)}(s)$ or $w(s) = 1_{(a,\infty)}(x)$, where $0 < a < \infty$ and $\lambda_w(s) = (-\log \left(\frac{s}{a} \right) + \frac{s}{a} - 1) \cdot w(s)$.
- Gamma swap: $w(s) = s$ and $\lambda_w(s) = s \log(s) - s$.
We want to develop robust pricing and hedging for weighed variance swaps. A w-weighted variance swap pays

$$
\mathcal{V}_T^w = \int_0^T w(S_u) d\langle \log S \rangle_u - k^w,
$$

where swap rate k^w is set so that $\mathcal{P}\mathcal{V}_T^w = 0$. We take $w : \mathbb{R}_+ \to \mathbb{R}_+$ with $w(s)/s^2$ locally integrable. Then, in any model,

$$
\int_0^T w(S_u) d\langle \log S \rangle_u = 2\lambda_w(S_T) - 2\lambda_w(S_0) - 2 \int_0^T \lambda'_w(S_u) dS_u \text{ a.s.},
$$

where $\lambda''_w(s) = w(s)/s^2$.

We have three important examples:

1. **Realised variance swap**: $w \equiv 1$ and $\lambda_w(s) = -\log(s)$.
2. **Corridor variance swap**: $w(s) = 1_{(0,a)}(s)$ or $w(s) = 1_{(a,\infty)}(s)$, where $0 < a < \infty$ and $\lambda_w(s) = (-\log \left(\frac{s}{a} \right) + \frac{s}{a} - 1) \cdot w(s)$.
3. **Gamma swap**: $w(s) = s$ and $\lambda_w(s) = s \log(s) - s$.
Motivating questions and FTAP with market input
Weighted variance swaps
Robust pricing and hedging of options with convex payoffs

Standing assumptions
w-variance swaps and convex payoffs

Lemma

Consider a model \((\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{Q}, (S_t))\) with \(S_t\) a \(\mathbb{Q}\)-martingale. Then

\[
\mathbb{E}^\mathbb{Q} \left[\int_0^T w(S_u) d\langle \log S \rangle_u \right] = 2 \mathbb{E}^\mathbb{Q}[\lambda_w(S_T)] - 2\lambda_w(S_0)
\]

and if they are finite then \(\int_0^T \lambda'_w(S_u) dS_u\) is a value of an admissible self-financing strategy.

Corollary

Suppose vanilla assets \(\mathcal{X}\) with prices \(\mathcal{P}\) are given and there exists a \((\mathcal{P}, \mathcal{X})\)-market model. Then the following are equivalent

- There exists a \((\mathcal{P}, \mathcal{X} \cup \{V^w_T\})\)-market model with \(\mathcal{P}V^w_T = 0\).
- There exists a \((\mathcal{P}, \mathcal{X} \cup \{\lambda_w(S_T)\})\)-market model with \(\mathcal{P}\lambda_w(S_T) = k^w/2 + 2\lambda_w(S_0)\).

Hence we reduce the problem to that of robust pricing and hedging of convex payoffs.
Lemma

Consider a model \((\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{Q}, (S_t))\) with \(S_t\) a \(\mathbb{Q}\)-martingale. Then

\[
\mathbb{E}^\mathbb{Q} \left[\int_0^T w(S_u)d\langle \log S \rangle_u \right] = 2\mathbb{E}^\mathbb{Q}[\lambda_w(S_T)] - 2\lambda_w(S_0)
\]

and if they are finite then \(\int_0^T \lambda'_w(S_u)dS_u\) is a value of an admissible self-financing strategy.

Corollary

Suppose vanilla assets \(\mathcal{X}\) with prices \(\mathcal{P}\) are given and there exists a \((\mathcal{P}, \mathcal{X})\)-market model. Then the following are equivalent

- There exists a \((\mathcal{P}, \mathcal{X} \cup \{V^w_T\})\)-market model with \(\mathcal{P}V^w_T = 0\).
- There exists a \((\mathcal{P}, \mathcal{X} \cup \{\lambda_w(S_T)\})\)-market model with \(\mathcal{P}\lambda_w(S_T) = k^w/2 + 2\lambda_w(S_0)\).

Hence we reduce the problem to that of robust pricing and hedging of convex payoffs.
Suppose $\mathcal{X} = \{1, (K_i - S_T)^+ : i = 1, \ldots, n\}$ with $\mathcal{P}(K_i - S_t)^+ = p_i$. We are interested in the range of $\mathbb{E}^Q \lambda(S_T)$ over all $(\mathcal{P}, \mathcal{X})$–market models.

Put differently: we are given prices of n put options and we want to understand no-arbitrage prices (and robust hedges) for an European option with payoff $\lambda(S_T)$.

The prices only depend on μ – the risk-neutral law of S_T. Given any μ on \mathbb{R}_+ such that

$$
\int s\mu(ds) = S_0, \quad \int (K_i - s)^+ \mu(ds) = p_i, \ i = 1, \ldots, n
$$

a $(\mathcal{P}, \mathcal{X})$–market model is given by $S_t = B_{\frac{t}{T-t} \wedge \tau}$, where B_u is a Q-BM and τ solves the Skorokhod embedding problem, $B_T \sim \mu$.

This is also a $(\mathcal{P}, \mathcal{X} \cup \{\lambda(S_T)\})$–market model where $\mathcal{P}\lambda(S_T) = \int \lambda(s)\mu(ds)$.

In particular, no-arbitrage prices of $\lambda(S_T)$ form an interval (by considering random mixtures of models).
Suppose \(\mathcal{X} = \{1, (K_i - S_T)^+ : i = 1, \ldots, n\} \) with \(\mathcal{P}(K_i - S_t)^+ = p_i \). We are interested in the range of \(\mathbb{E}^Q \lambda(S_T) \) over all \((\mathcal{P}, \mathcal{X})\)-market models.

Put differently: we are given prices of \(n \) put options and we want to understand no-arbitrage prices (and robust hedges) for an European option with payoff \(\lambda(S_T) \).

The prices only depend on \(\mu \) – the risk-neutral law of \(S_T \). Given any \(\mu \) on \(\mathbb{R}_+ \) such that

\[
\int s \mu(ds) = S_0, \quad \int (K_i - s)^+ \mu(ds) = p_i, \ i = 1, \ldots, n
\]

a \((\mathcal{P}, \mathcal{X})\)-market model is given by \(S_t = B_t \frac{t}{T-t} \wedge \tau \), where \(B_u \) is a \(Q \)-BM and \(\tau \) solves the Skorokhod embedding problem, \(B_T \sim \mu \).

This is also a \((\mathcal{P}, \mathcal{X} \cup \{\lambda(S_T)\})\)-market model where \(\mathcal{P} \lambda(S_T) = \int \lambda(s) \mu(ds) \).

In particular, no-arbitrage prices of \(\lambda(S_T) \) form an interval (by considering random mixtures of models).
Suppose $\mathcal{X} = \{1, (K_i - S_T)^+ : i = 1, \ldots, n\}$ with $\mathcal{P}(K_i - S_t)^+ = p_i$. We are interested in the range of $\mathbb{E}^Q \lambda(S_T)$ over all $(\mathcal{P}, \mathcal{X})$–market models.

*Put differently: we are given prices of n put options and we want to understand no-arbitrage prices (and robust hedges) for an European option with payoff $\lambda(S_T)$. The prices only depend on μ – the risk-neutral law of S_T. Given any μ on \mathbb{R}_+ such that

$$\int s \mu(ds) = S_0, \quad \int (K_i - s)^+ \mu(ds) = p_i, i = 1, \ldots, n$$

a $(\mathcal{P}, \mathcal{X})$–market model is given by $S_t = B_{t \wedge \tau}$, where B_u is a \mathbb{Q}-BM and τ solves the Skorokhod embedding problem, $B_T \sim \mu$. This is also a $(\mathcal{P}, \mathcal{X} \cup \{\lambda(S_T)\})$–market model where $\mathcal{P} \lambda(S_T) = \int \lambda(s)\mu(ds)$.

In particular, no-arbitrage prices of $\lambda(S_T)$ form an interval (by considering random mixtures of models).
Suppose \((\mathcal{P}, \mathcal{X})\) do not admit weak arbitrage, \(\lambda'' \geq 0\).

Primal Problem: Find

\[
UB_{\lambda} = \sup_{\mu \sim S_T} \int \lambda(s) \mu(ds), \quad LB_{\lambda} = \inf_{\mu \sim S_T} \int \lambda(s) \mu(ds),
\]

over all \((\mathcal{P}, \mathcal{X})\)-market models.

Dual Problem: Find

\[
\tilde{UB}_{\lambda} = \inf \left\{ \mathcal{P} \bar{F}(S_T) : \bar{F}(s) = \sum_{i=1}^{n} \pi_i (K_i - s)^+ + \phi s + \psi \geq \lambda(s) \right\}
\]

\[
\tilde{LB}_{\lambda} = \sup \left\{ \mathcal{P} \underline{F}(S_T) : \underline{F}(s) = \sum_{i=1}^{n} \pi_i (K_i - s)^+ + \phi s + \psi \leq \lambda(s) \right\}
\]

Theorem

If \(|LB_{\lambda}| < \infty \) then there is no duality gap, \(LB_{\lambda} = \tilde{LB}_{\lambda} \), and there exists an optimal \(F^* \) which solves the dual.

Likewise for the upper bound if there exists at least one superreplicating portfolio.
Suppose \((\mathcal{P}, \mathcal{X})\) do not admit weak arbitrage, \(\lambda'' \geq 0\).

Primal Problem: Find range of no-arbitrage prices

Dual Problem: Find robust super- and sub- hedges

Theorem

If \(|LB_\lambda| < \infty\) then there is no duality gap, \(LB_\lambda = \tilde{LB}_\lambda\), and there exists an optimal \(E^\) which solves the dual.*

Likewise for the upper bound if there exists at least one superreplicating portfolio.

Let \(\mathcal{X}_\lambda = \mathcal{X} \cup \{\lambda(S_T)\}\).

- If \(P_\lambda(S_T) \in (LB_\lambda, UB_\lambda)\) then there exists a \((\mathcal{P}, \mathcal{X}_\lambda)\)–m.m.
- If \(P_\lambda(S_T) \not\in [LB_\lambda, UB_\lambda]\) then there is model-independent arbitrage.
- If \(P_\lambda(S_T) \in \{LB_\lambda, UB_\lambda\}\) then there either exists a \((\mathcal{P}, \mathcal{X}_\lambda)\)–m.m. or there is a weak arbitrage.

\(\tilde{UB}\) and Superreplication — explicit

\(\tilde{LB}\) and Subreplication — solution of a dynamic programming alg
Suppose for simplicity that $\lambda(0) < \infty$ and $\lambda(s) = 0$ for all $s \geq \bar{s}$. Then, in any market model

$$\mathbb{E}^Q[\lambda(S_T)] = \int_0^\infty \lambda''(K)P(K)dK,$$

where $P(K) = \mathbb{E}^Q(K - S_T)^+$. However in any $(\mathcal{P}, \mathcal{X})$–market model $P(K)$ lays below the piecewise linear interpolation of the market prices, i.e. points $(0, 0), (K_1, p_1), \ldots, (K_n, p_n)$. We extend it with slope 1 to the right of K_n and call $P^*(K)$. Then

$$UB_{\lambda} = \sup_{(\mathcal{P}, \mathcal{X})-\text{m.m.}} \mathbb{E}^Q[\lambda(S_T)] = \int_0^\infty \lambda''(K)P^*(K)dK.$$

More importantly, UB_{λ} is simply the market price of

$$\bar{F}(S_T) = \sum_{i=1}^n \pi_i^*(K_i - S_T)^+ + \phi^*S_T + \psi^* \geq \lambda(S_T),$$

where $\bar{F}(s)$ is a linear interpolation of $(K_i, \lambda(K_i)), i = 0, 1, \ldots, n.$
Suppose for simplicity that \(\lambda(0) < \infty \) and \(\lambda(s) = 0 \) for all \(s \geq \bar{s} \). Then, in any market model

\[
\mathbb{E}^Q[\lambda(S_T)] = \int_0^\infty \lambda''(K)P(K)dK, \quad \text{where } P(K) = \mathbb{E}^Q(K - S_T)^+.
\]

However in any \((\mathcal{P}, \mathcal{X})\)–market model \(P(K) \) lays below the piecewise linear interpolation of the market prices, i.e. points \((0, 0), (K_1, p_1), \ldots, (K_n, p_n)\). We extend it with slope 1 to the right of \(K_n \) and call \(P^*(K) \). Then

\[
UB_{\lambda} = \sup_{(\mathcal{P}, \mathcal{X})\text{-m.m.}} \mathbb{E}^Q[\lambda(S_T)] = \int_0^\infty \lambda''(K)P^*(K)dK.
\]

More importantly, \(UB_{\lambda} \) is simply the market price of

\[
\bar{F}(S_T) = \sum_{i=1}^n \pi_i^*(K_i - S_T)^+ + \phi^* S_T + \psi^* \geq \lambda(S_T),
\]

where \(\bar{F}(s) \) is a linear interpolation of \((K_i, \lambda(K_i)), i = 0, 1, \ldots, n\).
Suppose for simplicity that $\lambda(0) < \infty$ and $\lambda(s) = 0$ for all $s \geq \overline{s}$. Then, in any market model

$$
\mathbb{E}^Q[\lambda(S_T)] = \int_0^\infty \lambda''(K)P(K)dK, \quad \text{where} \quad P(K) = \mathbb{E}^Q(K - S_T)^+.
$$

However in any $(\mathcal{P}, \mathcal{X})$–market model $P(K)$ lays below the piecewise linear interpolation of the market prices, i.e. points $(0, 0), (K_1, p_1), \ldots, (K_n, p_n)$. We extend it with slope 1 to the right of K_n and call $P^*(K)$. Then

$$
UB_\lambda = \sup_{(\mathcal{P}, \mathcal{X})–m.m.} \mathbb{E}^Q[\lambda(S_T)] = \int_0^\infty \lambda''(K)P^*(K)dK.
$$

More importantly, UB_λ is simply the market price of

$$
\overline{F}(S_T) = \sum_{i=1}^n \pi_i^*(K_i - S_T)^+ + \phi^*S_T + \psi^* \geq \lambda(S_T),
$$

where $\overline{F}(s)$ is a linear interpolation of $(K_i, \lambda(K_i)), i = 0, 1, \ldots, n$.

Jan Obłój
Lower bound is trickier – there is no uniform lower bound on put prices \(P(K) \) given our market input.

Indeed, choosing minimal price in one interval \([K_i, K_{i+1}]\) typically forces maximal prices in adjacent intervals. It is not clear \textit{a priori} if lower bound is attained and by what measure/put prices, and how to construct a subreplicating portfolio?

- We first showed that it is sufficient to look only at measures with at most \(n + 1 \) atoms,
- then obtained the lower bound as solution to a dynamic programming,
- and then proved it is always a value of a portfolio in market quoted options.

...and finally understood that it all hinges on duality in the theory of semi-infinite programming! (Issi, Karlin 1960)
Lower bound is trickier – there is no uniform lower bound on put prices $P(K)$ given our market input.

Indeed, choosing minimal price in one interval $[K_i, K_{i+1}]$ typically forces maximal prices in adjacent intervals. It is not clear a priori if lower bound is attained and by what measure/put prices, and how to construct a subreplicating portfolio?

- We first showed that it is sufficient to look only at measures with at most $n + 1$ atoms,
- then obtained the lower bound as solution to a dynamic programming,
- and then proved it is always a value of a portfolio in market quoted options.

...and finally understood that it all hinges on duality in the theory of semi-infinite programming! (Issi, Karlin 1960)
Lower bound is trickier – there is no uniform lower bound on put prices $P(K)$ given our market input.

Indeed, choosing minimal price in one interval $[K_i, K_{i+1}]$ typically forces maximal prices in adjacent intervals. It is not clear a priori if lower bound is attained and by what measure/put prices, and how to construct a subreplicating portfolio?

- We first showed that it is sufficient to look only at measures with at most $n + 1$ atoms,
- then obtained the lower bound as solution to a dynamic programming,
- and then proved it is always a value of a portfolio in market quoted options.

...and finally understood that it all hinges on duality in the theory of semi-infinite programming! (Issi, Karlin 1960)
Lower bound is trickier – there is no uniform lower bound on put prices $P(K)$ given our market input.

Indeed, choosing minimal price in one interval $[K_i, K_{i+1}]$ typically forces maximal prices in adjacent intervals. It is not clear a priori if lower bound is attained and by what measure/put prices, and how to construct a subreplicating portfolio?

- We first showed that it is sufficient to look only at measures with at most $n + 1$ atoms,
- then obtained the lower bound as solution to a dynamic programming,
- and then proved it is always a value of a portfolio in market quoted options.

...and finally understood that it all hinges on duality in the theory of semi-infinite programming! (Issi, Karlin 1960)
Lower bound is trickier – there is no uniform lower bound on put prices $P(K)$ given our market input.

Indeed, choosing minimal price in one interval $[K_i, K_{i+1}]$ typically forces maximal prices in adjacent intervals. It is not clear a priori if lower bound is attained and by what measure/put prices, and how to construct a subreplicating portfolio?

- We first showed that it is sufficient to look only at measures with at most $n + 1$ atoms,
- then obtained the lower bound as solution to a dynamic programming,
- and then proved it is always a value of a portfolio in market quoted options.

...and finally understood that it all hinges on duality in the theory of semi-infinite programming! (Issi, Karlin 1960)
Consider an example with one put option \((n = 1)\). We want to subhedge
\(- \log S_T\), i.e. superhedge \(\log S_T\).
Consider an example with one put option \((n = 1)\). We want to subhedge \(- \log S_T\), i.e. superhedge \(\log S_T\).

For any choice of \(b\), we can form a portfolio of cash, long underlying and short put option with payoff:

\[
x_0, x_1 \text{ solve } \quad g(x_0) = g(x_1) = 1 + b + Ke^{-1-b},
\]

where \(g(x) = \log x + K/x\).

\[
\bar{F}(S_T) = b + \frac{1}{x_1} S_T - \left(\frac{1}{x_0} - \frac{1}{x_1}\right)(K - S_T)^+ \geq \log S_T,
\]

and hence \(\mathcal{P}\bar{F}(S_T) = b + \frac{1}{x_1} S_0 - \left(\frac{1}{x_0} - \frac{1}{x_1}\right) p_K \geq \mathcal{P} \log S_T\). Minimising in \(b\) gives the lowest price and the associated superreplication. We then have \(p_K = (K - x_0)(x_1 - S_0)/(x_1 - x_0)\) and hence the bound is attained in a model with \(S_T \sim q\delta_{x_0} + (1 - q)\delta_{x_1}\), with \(q = (x_1 - S_0)/(x_1 - x_0)\).
Consider an example with one put option \((n = 1) \). We want to subhedge \(- \log S_T\), i.e. superhedge \(\log S_T \).

For any choice of \(b \), we can form a portfolio of cash, long underlying and short put option with payoff:

\[
x_0, x_1 \text{ solve } \quad g(x_0) = g(x_1) = 1 + b + Ke^{-1-b},
\]

where \(g(x) = \log x + K/x \).

\[
\overline{F}(S_T) = b + \frac{1}{x_1} S_T - \left(\frac{1}{x_0} - \frac{1}{x_1} \right) (K - S_T)^+ \geq \log S_T,
\]

and hence \(\mathcal{P}\overline{F}(S_T) = b + \frac{1}{x_1} S_0 - \left(\frac{1}{x_0} - \frac{1}{x_1} \right) p_K \geq \mathcal{P} \log S_T \). Minimising in \(b \) gives the lowest price and the associated superreplication. We then have \(p_K = (K - x_0)(x_1 - S_0)/(x_1 - x_0) \) and hence the bound is attained in a model with \(S_T \sim q\delta_{x_0} + (1-q)\delta_{x_1} \), with \(q = (x_1 - S_0)/(x_1 - x_0) \).
In fact the above is nothing else but an semi-infinite linear program:

Find \(v_P = \inf \{ c'z | z \in Z \} \) where

\[
Z = \{ z \in \mathbb{R}^3 : a(s)z \geq b(s) \quad \forall s \in \mathbb{R}^+ \}.
\]

Here \(a(s) \) is the vector of exercise values \(a(s) = (1, s, (K - s)^+) \), \(b(s) = \log s \) and \(c \) is the vector of asset prices \(c = (1, S_0, p_K) \).

Formally the LP dual is:

Find \(v_D = \sup \int_{\mathbb{R}^+} b(s) \mu(ds) \), where the supremum is taken over positive measures \(\mu \) satisfying the equality constraints \(c = \int a(s) \mu(ds) \), i.e.

\[
(1, S_0, p_K) = \left(\int 1 \, d\mu, \int s \, d\mu, \int (K - s)^+ \, d\mu \right).
\]

Our simple calculation shows

- There is no duality gap.
- The fact that the dual maximum is achieved at an atomic measure corresponds to the conventional LP result that dual variables are zero wherever constraints are not binding.
Numerical example for \(n = 3 \):

Consider a market input of three European put options maturing in 1 year. The data are \(S_0 = 100 \), \(F_T = 105 \), \(D_T = \exp(-0.03) \), \(K_i = 50, 100 \) and \(150 \), \(p_1 = 1.127 \), \(p_2 = 18.006 \) and \(p_3 = 53.326 \). The range of (weak) arbitrage-free prices for a vanilla variance swap, corridor variance swap and gamma swap is then:

<table>
<thead>
<tr>
<th>VS type</th>
<th>(w(x))</th>
<th>(\lambda_w(x))</th>
<th>Arbitrage bounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS</td>
<td>1</td>
<td>(-\ln(x))</td>
<td>([0.224, \infty))</td>
</tr>
<tr>
<td>Corr VS</td>
<td>(\mathbf{1}_{\left[\frac{F_T}{75}, \infty\right)}(x))</td>
<td>((-\ln\left(\frac{xF_T}{75}\right) + \frac{F_Tx}{75} - 1)wh(x))</td>
<td>((0.038, 0.340))</td>
</tr>
<tr>
<td>Gamma S</td>
<td>(x)</td>
<td>(x\ln(x) - x)</td>
<td>((0.125, \infty))</td>
</tr>
</tbody>
</table>
Numerical example for $n = 3$ (cont):

Consider a market input of three European put options maturing in 1 year. The data are $S_0 = 100$, $F_T = 105$, $D_T = \exp(-0.03)$, $K_i = 50, 100$ and 150, $p_1 = 1.127$, $p_2 = 18.006$ and $p_3 = 53.326$.

The log contract payoff $-\ln(S_T/F_T)$ (blue line) and the consequent sub-hedging portfolio (black line). The portfolio is given by $\pi_1^\dagger = 0.01706$, $\pi_2^\dagger = 0.00472$, $\pi_3^\dagger = 0.00259$, $\phi^\dagger = -0.00536$ and $\psi^\dagger = 0.42517$.
Numerical example for \(n = 3 \) (cont):

Consider a market input of three European put options maturing in 1 year. The data are \(S_0 = 100, \ F_T = 105, \ D_T = \exp(-0.03), \ K_i = 50, 100 \) and 150, \(p_1 = 1.127, \ p_2 = 18.006 \) and \(p_3 = 53.326 \).

\[
\text{Corr VS equivalent payoff } \left[-\ln\left(\frac{S_T}{75}\right) + \frac{S_T}{75} - 1 \right] \mathbf{1}_{\left[\frac{75}{F_T}, \infty\right)}\left(S_T/F_T\right) \text{ (blue line)} \text{ and the consequent sub-hedging portfolio (black line) and super-hedging portfolio (red line).}
\]
Numerical example for $n = 3$ (cont):

Consider a market input of three European put options maturing in 1 year. The data are $S_0 = 100$, $F_T = 105$, $D_T = \exp(-0.03)$, $K_i = 50, 100$ and 150, $p_1 = 1.127$, $p_2 = 18.006$ and $p_3 = 53.326$.

![Graph showing Gamma Swap equivalent payoff](image)

Gamma Swap equivalent payoff $\frac{S_T}{F_T} \ln \left(\frac{S_T}{F_T} \right) - \frac{S_T}{F_T}$ (blue line) and the consequent sub-hedging portfolio (black line). The portfolio is given by $\pi_1^\dagger = 0.00772$, $\pi_2^\dagger = 0.00571$, $\pi_3^\dagger = -0.00225$, $\phi^\dagger = 0$ and $\psi^\dagger = -0.929$.
Market Example: Variance swaps on S&P500 Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Quote date</th>
<th>VS quote</th>
<th>LB</th>
<th>No. of puts</th>
</tr>
</thead>
<tbody>
<tr>
<td>2M</td>
<td>20/04/2008</td>
<td>21.78</td>
<td>18.73</td>
<td>58</td>
</tr>
<tr>
<td>2M</td>
<td>19/07/2008</td>
<td>23.6</td>
<td>21.18</td>
<td>51</td>
</tr>
<tr>
<td>2M</td>
<td>19/10/2008</td>
<td>57.97</td>
<td>57.07</td>
<td>101</td>
</tr>
<tr>
<td>2M</td>
<td>20/01/2008</td>
<td>52.88</td>
<td>47.68</td>
<td>82</td>
</tr>
<tr>
<td>3M</td>
<td>20/03/2008</td>
<td>27.22</td>
<td>26.33</td>
<td>48</td>
</tr>
<tr>
<td>3M</td>
<td>19/06/2008</td>
<td>22.33</td>
<td>19.24</td>
<td>40</td>
</tr>
<tr>
<td>3M</td>
<td>19/09/2008</td>
<td>26.78</td>
<td>26.02</td>
<td>58</td>
</tr>
<tr>
<td>3M</td>
<td>20/12/2008</td>
<td>45.93</td>
<td>65.81</td>
<td>137</td>
</tr>
<tr>
<td>6M</td>
<td>19/03/2008</td>
<td>25.63</td>
<td>22.97</td>
<td>25</td>
</tr>
<tr>
<td>6M</td>
<td>19/06/2008</td>
<td>22.88</td>
<td>21.76</td>
<td>28</td>
</tr>
</tbody>
</table>

VS quote source: Peter Carr & Liuren Wu

European options source: Datastream and UBS (mid-quotes)
Market Example:

Variance swaps on S&P500 Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Quote date</th>
<th>VS quote</th>
<th>LB</th>
<th>No. of puts</th>
</tr>
</thead>
<tbody>
<tr>
<td>2M</td>
<td>20/04/2008</td>
<td>21.78</td>
<td>18.73</td>
<td>58</td>
</tr>
<tr>
<td>2M</td>
<td>19/07/2008</td>
<td>23.6</td>
<td>21.18</td>
<td>51</td>
</tr>
<tr>
<td>2M</td>
<td>19/10/2008</td>
<td>57.97</td>
<td>57.07</td>
<td>101</td>
</tr>
<tr>
<td>2M</td>
<td>20/01/2008</td>
<td>52.88</td>
<td>47.68</td>
<td>82</td>
</tr>
<tr>
<td>3M</td>
<td>20/03/2008</td>
<td>27.22</td>
<td>26.33</td>
<td>48</td>
</tr>
<tr>
<td>3M</td>
<td>19/06/2008</td>
<td>22.33</td>
<td>19.24</td>
<td>40</td>
</tr>
<tr>
<td>3M</td>
<td>19/09/2008</td>
<td>26.78</td>
<td>26.02</td>
<td>58</td>
</tr>
<tr>
<td>3M</td>
<td>20/12/2008</td>
<td>45.93</td>
<td>65.81</td>
<td>137</td>
</tr>
<tr>
<td>6M</td>
<td>19/03/2008</td>
<td>25.63</td>
<td>22.97</td>
<td>25</td>
</tr>
<tr>
<td>6M</td>
<td>19/06/2008</td>
<td>22.88</td>
<td>21.76</td>
<td>28</td>
</tr>
</tbody>
</table>

VS quote source: Peter Carr & Liuren Wu

European options source: Datastream and UBS (mid-quotes)
Closing remarks

- We derive model-independent no-arbitrage bounds, and associated super/sub-hedges, on prices of a European option with convex payoff, given market prices of finite set of co-maturing puts. This is equivalent to robust pricing and hedging of weighted variance swaps, assuming continuity of paths.

- This can be turned around: from market quotes of variance swaps rates we can infer information about wings of put prices.

- Number of questions remain, e.g. input of options with intermediate maturities, effect of jumps, quantifying the error due to discrete sampling...
CLOSING REMARKS

- We derive model-independent no-arbitrage bounds, and associated super/sub-hedges, on prices of a European option with convex payoff, given market prices of finite set of co-maturing puts. This is equivalent to robust pricing and hedging of weighted variance swaps, assuming continuity of paths.

- This can be turned around: from market quotes of variance swaps rates we can infer information about wings of put prices.

- Number of questions remain, e.g. input of options with intermediate maturities, effect of jumps, quantifying the error due to discrete sampling...
CLOSING REMARKS

- We derive model-independent no-arbitrage bounds, and associated super/sub-hedges, on prices of a European option with convex payoff, given market prices of finite set of co-maturing puts. This is equivalent to robust pricing and hedging of weighted variance swaps, assuming continuity of paths.

- This can be turned around: from market quotes of variance swaps rates we can infer information about wings of put prices.

- Number of questions remain, e.g. input of options with intermediate maturities, effect of jumps, quantifying the error due to discrete sampling...
THANK YOU
Towards a unified theory...

Classical approach
Assume a specific model.
Calibrate using *some* market prices.
Deduce unique prices and hedges.

Robust approach
Make no modelling assumptions.
Use *all* market prices.
Deduce price intervals and super/sub- hedges.

Unified approach
Have some modelling beliefs
(*a set of possible dynamics*)
Use all market information
(*both current and historic prices*)
Deduce robust prices and hedges
(*which will work with some p-ty*)
Towards a unified theory…

Classical approach
Assume a specific model.
Calibrate using *some* market prices.
Deduce unique prices and hedges.

Robust approach
Make no modelling assumptions.
Use *all* market prices.
Deduce price intervals and super/sub- hedges.

Unified approach
Have some modelling beliefs
(*a set of possible dynamics*)
Use all market information
(*both current and historic prices*)
Deduce robust prices and hedges
(*which will work with some p-ty*)
Towards a unified theory…

Classical approach
Assume a specific model.
Calibrate using some market prices.
Deduce unique prices and hedges.

Robust approach
Make no modelling assumptions.
Use all market prices.
Deduce price intervals and super/sub-hedges.

Unified approach
Have some modelling beliefs
(a set of possible dynamics)
Use all market information
(both current and historic prices)
Deduce robust prices and hedges
(which will work with some p-ty)
Towards a unified theory...

Classical approach
Assume a specific model.
Calibrate using some market prices.
Deduce unique prices and hedges.

Robust approach
Make no modelling assumptions.
Use all market prices.
Deduce price intervals and super/sub-hedges.

Unified approach
Have some modelling beliefs
(a set of possible dynamics)
Use all market information
(both current and historic prices)
Deduce robust prices and hedges
(which will work with some p-ty)
Main results
Upper bound
Lower bound

Motivating questions and FTAP with market input
Weighted variance swaps
Robust pricing and hedging of options with convex payoffs

References:

2. A.M.G. Cox, J.O., *Robust pricing and hedging of double no-touch options*, forthcoming in *Finance and Stochastics*