Attilio Meucci

Managing Diversification
A. MEUCCI - Managing Diversification

COMMON MEASURES OF DIVERSIFICATION

DIVERSIFICATION DISTRIBUTION

MEAN-DIVERSIFICATION FRONTIER

CONDITIONAL ANALYSIS

REFERENCES
Common Measures of Diversification

\[R_w \equiv w' \mathbf{R} \]

- Portfolio return
- Returns of securities (stocks, bonds, options, structured products, ...)
- Portfolio weights
Common Measures of Diversification

\[R_w \equiv w' \mathbf{R} \]

- **weight-based definitions**

 \[D_{Her} \equiv 1 - w'w \]

portfolio weights
A. MEUCCI - Managing Diversification

Common Measures of Diversification

\[R_w \equiv w' \mathbf{R} \]

- weight-based definitions

\[D_{Her} \equiv 1 - w'w \]

distribution

portfolio weights
- positive
- sum to one
A. MEUCCI - Managing Diversification

Common Measures of Diversification

\[R_w \equiv w' R. \]

- weight-based definitions

\[D_{Her} \equiv 1 - w' w. \]

\[D_{BP} \equiv - \sum_{n=1}^{N} w_n \ln(w_n). \]

portfolio weights

- positive
- sum to one
A. MEUCCI - Managing Diversification Common Measures of Diversification

\[R_w \equiv w'R. \]

- weight-based definitions

\[D_{Her} \equiv 1 - w'w. \]

\[D_{BP} \equiv - \sum_{n=1}^{N} w_n \ln(w_n). \]

\[D^{(\gamma)}_{HK} \equiv - \left(\sum_{n=1}^{N} w_n^\gamma \right)^{\frac{1}{\gamma-1}}. \]

Portfolio weights

- positive
- sum to one

Diagram

- Illustration of portfolio weights
- Security number

Notes

- Distribution
- Entropy
Common Measures of Diversification

weight-based definitions

\[R_w \equiv w' R. \]

\[D_{Her} \equiv 1 - w' w. \]

\[D_{BP} \equiv - \sum_{n=1}^{N} w_n \ln(w_n). \]

\[D^{(\gamma)}_{HK} \equiv - \left(\sum_{n=1}^{N} w_n^{\gamma} \right)^{\frac{1}{\gamma-1}}. \]
A. MEUCCI - Managing Diversification

Common Measures of Diversification

- Weight-based definitions

\[R_w \equiv w' \mathbf{R} \]

\[D_{Her} \equiv 1 - w'w \]

\[D_{BP} \equiv -\sum_{n=1}^{N} w_n \ln(w_n) \]

\[D_{HK}^{(\gamma)} \equiv -\left(\sum_{n=1}^{N} w_n^\gamma \right)^{\frac{1}{\gamma-1}} \]

- Risk-based definitions

\[D_{IP} \equiv 1 - w'Cw \]

Returns correlation matrix
A. MEUCCI - Managing Diversification Common Measures of Diversification

\[R_w \equiv w' \mathbf{R} \]

- weight-based definitions

\[D_{Her} \equiv 1 - w' w. \]
\[D_{BP} \equiv - \sum_{n=1}^{N} w_n \ln (w_n) \]
\[D^{(\gamma)}_{HK} \equiv - \left(\sum_{n=1}^{N} w_n^\gamma \right)^{\frac{1}{\gamma-1}} \]

- risk-based definitions

\[D_{IP} \equiv 1 - w' \mathbf{C} w, \]
\[D_{Diff} \equiv \sigma' w - \sqrt{w' \Sigma w}. \]

returns standard deviations
returns covariance matrix
A. MEUCCI - Managing Diversification Common Measures of Diversification

\[R_w \equiv w' R. \]

- weight-based definitions

\[D_{Her} \equiv 1 - w' w. \]

\[D_{BP} \equiv - \sum_{n=1}^{N} w_n \ln (w_n). \]

\[D^{(\gamma)}_{HK} \equiv - \left(\sum_{n=1}^{N} w_n^\gamma \right)^{\frac{1}{\gamma-1}}. \]

- risk-based definitions

\[D_{IP} \equiv 1 - w' C w. \]

\[D_{Diff} \equiv \sigma' w - \sqrt{w' \Sigma w}. \]

- factor-based definition

\[R_n \equiv \sum_{k=1}^{K} \beta_{n,k} F_k + \epsilon_n \]

\[D_{IS} \equiv 1 - \frac{\text{Var} \{ R_\epsilon \}}{\text{Var} \{ R_w \}} \]

portfolio return due to “idiosyncratic”
A. MEUCCI - Managing Diversification Common Measures of Diversification

\[R_w \equiv w'R. \]

- weight-based definitions

 \[D_{Her} \equiv 1 - w'w. \]

 \[D_{BP} \equiv - \sum_{n=1}^{N} w_n \ln(w_n). \]

 \[D_{HK}^{(\gamma)} \equiv - \left(\sum_{n=1}^{N} w_n^\gamma \right)^{\frac{1}{\gamma-1}}. \]

- factor-based definition

 \[R_n \equiv \sum_{k=1}^{K} \beta_{n,k} F_k + \epsilon_n. \]

 \[D_{IS} \equiv 1 - \frac{\text{Var} \{ R_\epsilon \}}{\text{Var} \{ R_w \}}. \]

- risk-based definitions

 \[D_{IP} \equiv 1 - w'Cw. \]

 \[D_{Diff} \equiv \sigma'w - \sqrt{w'\Sigma w}. \]

These definitions apply in specific circumstances and or under restrictive hypotheses.
COMMON MEASURES OF DIVERSIFICATION

DIVERSIFICATION DISTRIBUTION

MEAN-DIVERSIFICATION FRONTIER

CONDITIONAL ANALYSIS

REFERENCES
\[R_w \equiv w' R. \]
Example: portfolio of two securities

- one bond \(w_1 = 50\% \) \(\text{Var}\{R_1\} = (1\%)^2 \)
- one stock \(w_2 = 50\% \) \(\text{Var}\{R_2\} = (30\%)^2 \)

if correlations = 0

\[R_w \equiv w' \mathbf{R}. \]
A. MEUCCI - Managing Diversification

Example: portfolio of two securities

- one bond \(w_1 = 50\% \) \(Var\{R_1\} = (1\%)^2 \)
- one stock \(w_2 = 50\% \) \(Var\{R_2\} = (30\%)^2 \)

if correlations = 0

\[
R_w \equiv w^\prime \mathbf{R}.
\]

\[
Var\{R_w\} \equiv \sum_{n=1}^{N} Var\{w_n R_n\}
\]

weights highly diversified

risk highly concentrated
if correlations ≠ 0

\[R_w \equiv w' \mathbf{R} \]

\[\text{Var} \{ R_w \} \neq \sum_{n=1}^{N} \text{Var} \{ w_n R_n \} \]
Diversification Distribution

\[R_w \equiv w' \mathbf{R} \]

\[\text{Var} \{ R_w \} \neq \sum_{n=1}^{N} \text{Var} \{ w_n R_n \} \]

if correlations = 0

Example: portfolio of two government bonds in same duration bucket

Bond 1 \(w_1 = 50\% \) \(\text{Var} \{ R_1 \} = (1\%)^2 \)

Bond 2 \(w_2 = 50\% \) \(\text{Var} \{ R_2 \} = (1\%)^2 \)
A. MEUCCI - Managing Diversification

Diversification Distribution

\[R_w \equiv w' \mathbf{R} \]

\[\text{Var} \{ R_w \} \neq \sum_{n=1}^{N} \text{Var} \{ w_n R_n \} \]

Example: portfolio of two government bonds in same duration bucket

<table>
<thead>
<tr>
<th>Bond 1</th>
<th>(w_1 = 50%)</th>
<th>(\text{Var} { R_1 } = (1%)^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bond 2</td>
<td>(w_2 = 50%)</td>
<td>(\text{Var} { R_2 } = (1%)^2)</td>
</tr>
</tbody>
</table>

Weighs highly diversified

Volatility homogeneous

High concentration due to correlations: full exposure to first principal component
A. MEUCCI - Managing Diversification Diversification Distribution

\[R_w \equiv w' \Sigma \]

\[\Sigma \equiv \text{Cov}\{R\} \]

\[\Sigma \equiv E \Lambda E' \]

\[E \equiv (e_1, \ldots, e_N) \]

\[\Lambda \equiv \text{diag}(\lambda_1^2, \ldots, \lambda_N^2) \]

\[\lambda_n^2 \equiv \text{Var}\{e_n'R\} \]

PCA

eigenvectors

principal portfolios

eigenvalues

principal variances

principal portfolio 1

principal portfolio 2

\[R_2 \]

\[R_1 \]
A. MEUCCI - Managing Diversification Diversification Distribution

\[R_w \equiv w' \Sigma \]

\[\Sigma \equiv \text{Cov}\{R\} \]

\[\Sigma \equiv \mathbf{E} \Lambda \mathbf{E}' \]

\[\tilde{R} \equiv \mathbf{E}^{-1} R \]

return of principal portfolios
\[
R_w \equiv w' \mathbf{R}.
\]

\[
\Sigma \equiv \text{Cov}\{\mathbf{R}\}
\]

\[
\Sigma \equiv \mathbf{E} \Lambda \mathbf{E}'
\]

\[\tilde{\mathbf{R}} \equiv \mathbf{E}^{-1} \mathbf{R}\]
return of principal portfolios

\[\tilde{w} \equiv \mathbf{E}^{-1} w\]
weights of original portfolio on principal portfolios
\[R_w \equiv w' \mathbf{R} \]

\[\Sigma \equiv \text{Cov}\{\mathbf{R}\} \]

\[\Sigma \equiv \mathbf{E} \Lambda \mathbf{E}' \]

\[\mathbf{R} \equiv \mathbf{E}^{-1} \mathbf{R} \quad \text{return of principal portfolios} \]

\[\mathbf{w} \equiv \mathbf{E}^{-1} \mathbf{w} \quad \text{weights of original portfolio on principal portfolios} \]

\[R_w \equiv \mathbf{w}' \mathbf{R} \]
A. MEUCCI - Managing Diversification

Diversification Distribution

\[R_w \equiv w'\mathbf{R} \]

\[\text{variance concentration curve} \]

\[\text{total variance} \]

\[\tilde{\mathbf{R}} \equiv \mathbf{E}^{-1}\mathbf{R} \]

\[\tilde{\mathbf{w}} \equiv \mathbf{E}^{-1}w \]

\[v_n \equiv \tilde{w}_n^2\lambda_n \]

\[\text{return of principal portfolios} \]

\[\text{weights of original portfolio on principal portfolios} \]

\[\text{variance concentration curve} \]

\[\text{contribution to original portfolio variance from n-th principal portfolio:} \]

\[\text{Var} \{R_w\} \equiv \sum_{n=1}^{N} v_n \]
Example: portfolio of two government bonds in same duration bucket

Bond 1 \(w_1 = 50\% \)

Bond 2 \(w_2 = 50\% \)

\[\text{Var} \{ R_1 \} = (1\%)^2 \]

\[\text{Var} \{ R_2 \} = (1\%)^2 \]

\(\tilde{R} \equiv E^{-1}R \)

\(\tilde{\omega} \equiv E^{-1}w \)

\(v_n \equiv \tilde{w}_n^2 \lambda_n \)

\[\text{Var} \{ R_w \} \equiv \sum_{n=1}^{N} v_n \]
A. MEUCCI - Managing Diversification Diversification Distribution

\[R_w \equiv w' \tilde{R}. \]

- **total volatility**
- **volatility concentration curve**

\[\tilde{R} \equiv E^{-1}R \]

- return of principal portfolios

\[\tilde{w} \equiv E^{-1}w. \]

- weights of original portfolio on principal portfolios

\[v_n \equiv \tilde{w}_n^2 \lambda_n^2; \]

- variance concentration curve

\[s_n \equiv \frac{\tilde{w}_n^2 \lambda_n^2}{sd \{R_w\}} \]

- volatility concentration curve

contribution to original portfolio volatility from n-th principal portfolio: “hot spots”
\(R_w \equiv w' \tilde{R} \)

Diversification Distribution

\[\begin{align*}
\tilde{R} &\equiv E^{-1}R \\
\tilde{w} &\equiv E^{-1}w,
\end{align*}\]

- return of principal portfolios
- weights of original portfolio on principal portfolios

\[\begin{align*}
v_n &\equiv \tilde{w}_n^2 \lambda_n^2 \\
\sigma_n &\equiv \frac{\tilde{w}_n^2 \lambda_n^2}{\text{Sd} \{R_w\}} \\
p_n &\equiv \frac{\tilde{w}_n^2 \lambda_n^2}{\text{Var} \{R_w\}}
\end{align*}\]

- variance concentration curve
- volatility concentration curve
- diversification distribution
- contribution to original portfolio r-square from n-th principal portfolio
A. MEUCCI - Managing Diversification Diversification Distribution

\[R_w \equiv w' \tilde{R}. \]

\[\tilde{R} \equiv E^{-1} R \]

\[\tilde{w} \equiv E^{-1} w, \]

return of principal portfolios

weights of original portfolio on principal portfolios

\[v_n \equiv \tilde{w}_n^2 \lambda_n^2 \]

variance concentration curve

\[s_n \equiv \frac{\tilde{w}_n^2 \lambda_n^2}{\text{Sd} \{ R_w \}} \]

volatility concentration curve

\[p_n \equiv \frac{\tilde{w}_n^2 \lambda_n^2}{\text{Var} \{ R_w \}} \]

diversification distribution
Example: management with benchmark

\[w \leftarrow w - b \]

weights \quad benchmark \quad weights

\[\text{relative weights} \]

\[\tilde{R} \equiv E^{-1} R \]
return of principal portfolios

\[\tilde{w} \equiv E^{-1} w \]
weights of original portfolio on principal portfolios

\[\begin{align*}
\nu_n & \equiv \tilde{w}_n^2 \lambda_n^2 \\
\sigma_n & \equiv \frac{\tilde{w}_n^2 \lambda_n^2}{Sd \{R_w\}} \\
p_n & \equiv \frac{\tilde{w}_n^2 \lambda_n^2}{\text{Var} \{R_w\}}
\end{align*} \]
variance concentration curve

\[\uparrow \quad \downarrow \]
volatility / \textbf{tracking error} concentration curve

\[\uparrow \quad \downarrow \]
diversification distribution
Example: management with benchmark

\[w \rightarrow w - b \]

relative weights

\[\tilde{R} \equiv E^{-1}R \]

return of principal portfolios

\[\tilde{w} \equiv E^{-1}w, \]

weights of original portfolio on principal portfolios

\[
\begin{align*}
v_n & \equiv \tilde{w}_n^2 \lambda_n^2 \\
s_n & \equiv \frac{\tilde{w}_n^2 \lambda_n^2}{\text{Sd} \{ R_w \}} \\
p_n & \equiv \frac{\tilde{w}_n^2 \lambda_n^2}{\text{Var} \{ R_w \}}
\end{align*}
\]

variance concentration curve

\[\updownarrow \]

volatility / tracking error concentration curve

\[\updownarrow \]

diversification distribution
Example: management with benchmark

\[w \rightarrow w - b \]

relative weights

\[\tilde{R} \equiv E^{-1}R \]

return of principal portfolios

\[\tilde{w} \equiv E^{-1}w \]

weights of original portfolio on principal portfolios

\[
\begin{align*}
 v_n & \equiv \hat{w}_n^2 \lambda_n^2 \\
 s_n & \equiv \frac{\hat{w}_n^2 \lambda_n^2}{\text{Sd} \{ R_w \}} \\
 p_n & \equiv \frac{\hat{w}_n^2 \lambda_n^2}{\text{Var} \{ R_w \}}
\end{align*}
\]

variance concentration curve

\[\leq \]

volatility / tracking error concentration curve

\[\leq \]

diversification distribution
COMMON MEASURES OF DIVERSIFICATION

DIVERSIFICATION DISTRIBUTION

MEAN-DIVERSIFICATION FRONTIER

CONDITIONAL ANALYSIS

REFERENCES
A. MEUCCI - Managing Diversification Mean-Diversification Frontier

\[\tilde{R} \equiv E^{-1}R \]
return of principal portfolios

\[\tilde{\mathbf{w}} \equiv E^{-1}\mathbf{w}, \]
weights of original portfolio on principal portfolios

\[v_n \equiv \tilde{w}_n^2 \lambda_n^2, \]
variance concentration curve

\[s_n \equiv \frac{\tilde{w}_n^2 \lambda_n^2}{\text{Sd}\{R_w\}}, \]
volatility concentration curve

\[p_n \equiv \frac{\tilde{w}_n^2 \lambda_n^2}{\text{Var}\{R_w\}}, \]
diversification distribution: “probability mass”
A. MEUCCI - Managing Diversification Mean-Diversification Frontier

\[\tilde{R} \equiv E^{-1}R \quad \text{return of principal portfolios} \]

\[\tilde{w} \equiv E^{-1}w, \quad \text{weights of original portfolio on principal portfolios} \]

\[v_n \equiv \tilde{w}_n^2 \lambda_n^2 \quad \text{variance concentration curve} \]

\[s_n \equiv \frac{\tilde{w}_n^2 \lambda_n^2}{\text{std} \{R_w\}} \quad \text{volatility concentration curve} \]

\[p_n \equiv \frac{\tilde{w}_n^2 \lambda_n^2}{\text{var} \{R_w\}} \quad \text{diversification distribution: “probability mass”} \]

\[R_w \equiv \tilde{w}'\tilde{R}. \]
A. MEUCCI - Managing Diversification

Mean-Diversification Frontier

return of principal portfolios

weights of original portfolio on principal portfolios

entropy

\[- \sum_{n=1}^{N} p_n \ln p_n \]

diversification distribution: “probability mass”

\[\tilde{R} \equiv E^{-1}R \]

\[\tilde{w} \equiv E^{-1}w \]

variance concentration curve

\[v_n \equiv \tilde{w}_n^2 \lambda_n^2 \]

volatility concentration curve

\[s_n \equiv \frac{\tilde{w}_n^2 \lambda_n^2}{\text{Sd} \{ R_w \}} \]

principal portfolio number

\[p_n \equiv \frac{\tilde{w}_n^2 \lambda_n^2}{\text{Var} \{ R_w \}} \]
A. MEUCCI - Managing Diversification Mean-Diversification Frontier

Effective number of bets

$$N_{\text{Ent}} \equiv \exp \left(- \sum_{n=1}^{N} p_n \ln p_n \right)$$

diversification index

entropy

$$\sum_{n=1}^{N} p_n \ln p_n$$
Effective number of bets

\[N_{\text{Ent}} \equiv \exp \left(- \sum_{n=1}^{N} p_n \ln p_n \right) \]

full concentration \[N_{\text{Ent}} \approx 1 \]

weights

diversification distribution

\[p_n \equiv \frac{\tilde{w}_n^2 \lambda_n^2}{\text{Var} \{ R_w \}} \]

diversification distribution: “probability mass”
Effective number of bets

\[N_{Ent} \equiv \exp \left(- \sum_{n=1}^{N} p_n \ln p_n \right) \]

- full concentration: \(N_{Ent} \approx 1 \)
- full diversification: \(N_{Ent} \approx N \)

weights

diversification distribution

\[p_n \equiv \frac{\tilde{w}_n^2 \lambda_n^2}{\text{Var} \{ R_w \}} \]

diversification distribution: “probability mass”
Effective number of bets

\[N_{\text{Ent}} \equiv \exp \left(- \sum_{n=1}^{N} p_n \ln p_n \right) \]

Mean-diversification frontier

\[w_\varphi \equiv \arg \max_{w \in C} \{ \varphi \mu' w + (1 - \varphi) N_{\text{Ent}}(w) \} \]
A. MEUCCI - Managing Diversification

Mean-Diversification Frontier

Effective number of bets

\[N_{Ent} \equiv \exp \left(- \sum_{n=1}^{N} p_n \ln p_n \right) \]

- full concentration \(N_{Ent} \approx 1 \)
- full diversification \(N_{Ent} \approx N \)

Mean-diversification frontier

\[w_\varphi \equiv \arg \max_{w \in C} \{ \varphi \mu'w + (1 - \varphi) N_{Ent}(w) \} \]

Allocation in terms of

original portfolio weights

not principal portfolios
A. MEUCCI - Managing Diversification

Mean-Diversification Frontier

Effective number of bets

\[N_{Ent} \equiv \exp \left(- \sum_{n=1}^{N} p_n \ln p_n \right) \]

- Full concentration: \(N_{Ent} \approx 1 \)
- Full diversification: \(N_{Ent} \approx N \)

Transaction costs

\[\mu'w \rightarrow \mu'w - T(w, w_{cur}) \]

Non linear, non-continuous function of current and target portfolio

Mean-diversification frontier

\[w_{\varphi} \equiv \arg\max_{w \in C} \{ \varphi \mu'w + (1 - \varphi) N_{Ent}(w) \} \]
A. MEUCCI - Managing Diversification

Mean-Diversification Frontier

Effective number of bets

\[N_{\text{Ent}} \equiv \exp \left(- \sum_{n=1}^{N} p_n \ln p_n \right) \]

- full concentration \[N_{\text{Ent}} \approx 1 \]
- full diversification \[N_{\text{Ent}} \approx N \]

Transaction costs adjusted mean-diversification frontier

\[w_\varphi \equiv \arg\max_{w \in \mathcal{C}} \left\{ \varphi (\mu' w - T (w, w_{\text{cur}})) + (1 - \varphi) N_{\text{Ent}} (w) \right\} \]
A. MEUCCI - Managing Diversification

Mean-Diversification Frontier

Effective number of bets

\[N_{\text{Ent}} \equiv \exp \left(- \sum_{n=1}^{N} p_n \ln p_n \right) \]

- Full concentration: \(N_{\text{Ent}} \approx 1 \)
- Full diversification: \(N_{\text{Ent}} \approx N \)

Transaction costs adjusted mean-diversification frontier

\[w_\varphi \equiv \arg\max_{w \in \mathcal{C}} \left\{ \varphi (\mu' w - T (w, w_{\text{cur}})) + (1 - \varphi) N_{\text{Ent}} (w) \right\} \]

Effective number of bets

Expected return
COMMON MEASURES OF DIVERSIFICATION

DIVERSIFICATION DISTRIBUTION

MEAN-DIVERSIFICATION FRONTIER

CONDITIONAL ANALYSIS

REFERENCES
A. MEUCCI - Managing Diversification

Conditional Analysis

Constraints

\[A \Delta w \equiv 0 \]

\[K \times N \quad N \times 1 \]
Constraints

\[A \Delta w \equiv 0 \]

\[K \times N \quad N \times 1 \]

Conditional PCA

Feasible trades

\[n = K + 1, \ldots, N \]

\[e_n \equiv \text{argmax} \{ e' \Sigma e \} \]

\[e'e = 1 \]

\[e' \Sigma e_j = 0, \quad \text{for all existing } e_j \]

such that

\[A e \equiv 0 \]
A. MEUCCI - Managing Diversification

Conditional Analysis

Constraints

\[A \Delta w \equiv 0 \]

\[K \times N \quad N \times 1 \]

Conditional PCA

Feasible trades

\[n = K + 1, \ldots, N \]

\[e_n \equiv \underset{e', e \equiv 1}{\text{argmax}} \{ e' \Sigma e \} \]

such that

\[e' \Sigma e_j \equiv 0 \]

for all existing \(e_j \)

\[A e \equiv 0 \]

Complementary, unfeasible trades

\[n = 1, \ldots, K \]

\[e_n \equiv \underset{e', e \equiv 1}{\text{argmax}} \{ e' \Sigma e \} \]

such that

\[e' \Sigma e_j \equiv 0 \]

for all existing \(e_j \)
COMMON MEASURES OF DIVERSIFICATION

DIVERSIFICATION DISTRIBUTION

MEAN-DIVERSIFICATION FRONTIER

CONDITIONAL ANALYSIS

REFERENCES
A. MEUCCI - Managing Diversification

- Article:
 Attilio Meucci, “Managing Diversification”
 Risk - May 2009

- MATLAB examples:
 MATLAB Central Files Exchange (see above article)

- This presentation:
 www.symmys.com > Teaching > Talks