Interest Rate Modeling in the New Era

Fabio Mercurio

Bloomberg L.P., New York

Columbia
March 21, 2016
Before the credit crunch of 2007, interest rates in the market showed typical textbook behavior. For instance:

Example 1
A floating rate bond where LIBOR is set in advance and paid in arrears is worth par (=100) at inception.

\[
100 \cdot \tau_i \cdot L(T_{i-1}, T_i) \quad 100
\]

where \(\tau_i\) is the “length” of the interval \((T_{i-1}, T_i]\), and \(L(T_{i-1}, T_i)\) denotes the LIBOR at \(T_{i-1}\) for maturity \(T_i\).
Example 2
The forward rate implied by two deposits coincides with the corresponding FRA rate: $F_{\text{Depo}} = F_{\text{FRA}}$.

The forward rate implied by the two deposits with maturity T_1 and T_2 is defined by:

$$F_{\text{Depo}} = \frac{1}{T_2 - T_1} \left[\frac{P(0, T_1)}{P(0, T_2)} - 1 \right]$$

The corresponding FRA rate is the (unique) value of $K = F_{\text{FRA}}$ for which the following swap(let) has zero value at time $t = 0$.

$$L(T_1, T_2) - K$$
Example 3
Compounding two consecutive 3m forward LIBOR rates yields the corresponding 6m forward LIBOR rate:

\[
(1 + \frac{1}{4} F_{1}^{3m})(1 + \frac{1}{4} F_{2}^{3m}) = 1 + \frac{1}{2} F^{6m}
\]

where

- \(F_{1}^{3m} = F(0; 3m, 6m) \)
- \(F_{2}^{3m} = F(0; 6m, 9m) \)
- \(F^{6m} = F(0; 3m, 9m) \)
Since the credit crunch of 2007, the LIBOR-OIS basis has been neither deterministic nor negligible.
Interest rates in the new era
The explosion of the basis

- Since the credit crunch of 2007, the LIBOR-OIS basis has been neither deterministic nor negligible.

- Likewise, since August 2007 the basis between different tenor LIBORs has been neither deterministic nor negligible.
Interest rates in the new era

The use of different discount and forward curves

- OIS rates are regarded as the best available proxies for risk-free rates.

Example: USD OIS curve as of Sep 24, 2014 ⇒
Interest rates in the new era
The use of different discount and forward curves

- OIS rates are regarded as the best available proxies for risk-free rates. Example: USD OIS curve as of Sep 24, 2014 ⇒

- Banks construct different curves for different LIBOR tenors. Example: USD 3m-LIBOR curve as of Sep 24, 2014 ⇒
Definitions in the multi-curve world

Discount curve

- We assume OIS discounting.
- We consider a tenor x and an associated time structure $T^x = \{0 < T_0, \ldots, T_M\}$, with $T_k - T_{k-1} = x$, $k = 1, \ldots, M$.
Definitions in the multi-curve world

Discount curve

- We assume OIS discounting.
- We consider a tenor x and an associated time structure $\mathcal{T}^x = \{0 < T_0, \ldots, T_M\}$, with $T_k - T_{k-1} = x$, $k = 1, \ldots, M$.
- OIS forward rates are defined as in the classic single-curve paradigm:

$$F^x_k(t) := F_D(t; T_{k-1}, T_k) = \frac{1}{\tau_k} \left[\frac{P_D(t, T_{k-1})}{P_D(t, T_k)} - 1 \right]$$

for $k = 1, \ldots, M$, where
 - τ_k is the year fraction for the interval $(T_{k-1}, T_k]$;
 - $P_D(t, T)$ denotes the discount factor at time t for maturity T for the discount (OIS) curve.
We assume OIS discounting.

We consider a tenor x and an associated time structure
\[T^x = \{0 < T_0, \ldots, T_M\}, \text{ with } T_k - T_{k-1} = x, k = 1, \ldots, M. \]

OIS forward rates are defined as in the classic single-curve paradigm:
\[F^x_k(t) := F_D(t; T_{k-1}, T_k) = \frac{1}{\tau_k} \left[\frac{P_D(t, T_{k-1})}{P_D(t, T_k)} - 1 \right] \]
for $k = 1, \ldots, M$, where
- τ_k is the year fraction for the interval $(T_{k-1}, T_k]$;
- $P_D(t, T)$ denotes the discount factor at time t for maturity T for the discount (OIS) curve.

Consistently with OIS discounting, we assume that risk-adjusted measures are defined by the discount curve.
Definitions in the multi-curve world

Forward LIBOR rates

- The forward LIBOR rate at time t for the period $[T_{k-1}, T_k]$ is denoted by $L^x_k(t)$ and defined by

$$L^x_k(t) = E^T_D [L(T_{k-1}, T_k)| \mathcal{F}_t],$$

where

- $L(T_{k-1}, T_k)$ denotes the LIBOR set at T_{k-1} with maturity T_k;
- E^T_D denotes expectation under the (OIS) T-forward measure;
- \mathcal{F}_t denotes the “information” available at time t.

Definitions in the multi-curve world
Forward LIBOR rates

- The forward LIBOR rate at time t for the period $[T_{k-1}, T_k]$ is denoted by $L^x_k(t)$ and defined by

$$L^x_k(t) = E^T_D[L(T_{k-1}, T_k)|\mathcal{F}_t],$$

where

- $L(T_{k-1}, T_k)$ denotes the LIBOR set at T_{k-1} with maturity T_k;
- E^T_D denotes expectation under the (OIS) T-forward measure;
- \mathcal{F}_t denotes the “information” available at time t.

- As in single-curve modeling, $L^x_k(t)$ is the fixed rate to be exchanged at time T_k for $L(T_{k-1}, T_k)$ so that the swaplet has zero value at time t:

Value swaplet: 0

\[L(T_{k-1}, T_k) - L^x_k(t) \]

Time: t T_{k-1} T_k
Definitions in the multi-curve world

Forward LIBOR rates

The previous definition of forward LIBOR rate is natural for the following reasons (we omit the superscript x):

1. $L_k(t) = E_T D[L(T_{k-1}, T_k) | F_t]$ coincides with the classically defined forward rate in the limit case of a single curve:

 $E_T D[L(T_{k-1}, T_k) | F_t] = E_T D[F_D(T_{k-1}; T_k-1, T_k)] = \frac{1}{\tau_k} E_T D[P_F(t, T_{k-1}) - P_F(t, T_k)] P_F(t, T_k)$

2. $L_k(T_{k-1})$ coincides with the LIBOR $L(T_{k-1}, T_k)$:

 $L_k(T_{k-1}) = E_T D[L(T_{k-1}, T_k) | T_{k-1}]$

3. $L_k(0)$ can be stripped from market data.

4. $L_k(t)$ is a martingale under the corresponding OIS forward measure.

5. This definition allows for a natural extension of the market formulas for swaps, caps and swaptions.
Definitions in the multi-curve world

Forward LIBOR rates

The previous definition of forward LIBOR rate is natural for the following reasons (we omit the superscript x):

1. $L_k(t) = E^T_k[L(T_{k-1}, T_k) | \mathcal{F}_t]$ coincides with the classically defined forward rate in the limit case of a single curve:

$$E^T_k[L(T_{k-1}, T_k) | \mathcal{F}_t] = E^T_k[F_D(T_{k-1}; T_{k-1}, T_k) | \mathcal{F}_t]$$

$$= \frac{1}{\tau_k} E^T_k\left[\frac{P_D(t, T_{k-1}) - P_D(t, T_k)}{P_D(t, T_k)}\right] = F_D(t; T_{k-1}, T_k)$$

$L_k(0)$ can be stripped from market data.

$L_k(t)$ is a martingale under the corresponding OIS forward measure.

This definition allows for a natural extension of the market formulas for swaps, caps and swaptions.
The previous definition of forward LIBOR rate is natural for the following reasons (we omit the superscript x):

1. $L_k(t) = E_{D}^{T_k} [L(T_{k-1}, T_k)|\mathcal{F}_t]$ coincides with the classically defined forward rate in the limit case of a single curve:

 \[
 E_{D}^{T_k}[L(T_{k-1}, T_k)|\mathcal{F}_t] = E_{D}^{T_k}[F_D(T_{k-1}; T_{k-1}, T_k)|\mathcal{F}_t] = \frac{1}{\tau_k} E_{D}^{T_k}\left[\frac{P_D(t, T_{k-1})-P_D(t, T_k)}{P_D(t, T_k)} \right] = F_D(t; T_{k-1}, T_k)
 \]

2. $L_k(T_{k-1})$ coincides with the LIBOR $L(T_{k-1}, T_k)$:

 \[
 L_k(T_{k-1}) = E_{D}^{T_k} [L(T_{k-1}, T_k)|\mathcal{F}_{T_{k-1}}] = L(T_{k-1}, T_k)
 \]
Definitions in the multi-curve world

Forward LIBOR rates

The previous definition of forward LIBOR rate is natural for the following reasons (we omit the superscript \(x \)):

1. \(L_k(t) = E_D^{T_k} \left[L(T_{k-1}, T_k) | \mathcal{F}_t \right] \) coincides with the classically defined forward rate in the limit case of a single curve:

\[
E_D^{T_k} \left[L(T_{k-1}, T_k) | \mathcal{F}_t \right] = E_D^{T_k} \left[F_D(T_{k-1}; T_{k-1}, T_k) | \mathcal{F}_t \right]
\]

\[
= \frac{1}{\tau_k} E_D^{T_k} \left[\frac{P_D(t, T_{k-1}) - P_D(t, T_k)}{P_D(t, T_k)} \right] = F_D(t; T_{k-1}, T_k)
\]

2. \(L_k(T_{k-1}) \) coincides with the LIBOR \(L(T_{k-1}, T_k) \):

\[
L_k(T_{k-1}) = E_D^{T_k} \left[L(T_{k-1}, T_k) | \mathcal{F}_{T_{k-1}} \right] = L(T_{k-1}, T_k)
\]

3. \(L_k(0) \) can be stripped from market data.
Definitions in the multi-curve world

Forward LIBOR rates

The previous definition of forward LIBOR rate is natural for the following reasons (we omit the superscript x):

1. $L_k(t) = E^{T_k}_D[L(T_{k-1}, T_k)|\mathcal{F}_t]$ coincides with the classically defined forward rate in the limit case of a single curve:

$$E^{T_k}_D[L(T_{k-1}, T_k)|\mathcal{F}_t] = E^{T_k}_D[F_D(T_{k-1}; T_{k-1}, T_k)|\mathcal{F}_t]$$

$$= \frac{1}{\tau_k} E^{T_k}_D \left[\frac{P_D(t, T_{k-1}) - P_D(t, T_k)}{P_D(t, T_k)} \right] = F_D(t; T_{k-1}, T_k)$$

2. $L_k(T_{k-1})$ coincides with the LIBOR $L(T_{k-1}, T_k)$:

$$L_k(T_{k-1}) = E^{T_k}_D[L(T_{k-1}, T_k)|\mathcal{F}_{T_{k-1}}] = L(T_{k-1}, T_k)$$

3. $L_k(0)$ can be stripped from market data.

4. $L_k(t)$ is a martingale under the corresponding OIS forward measure.
Definitions in the multi-curve world

Forward LIBOR rates

The previous definition of forward LIBOR rate is natural for the following reasons (we omit the superscript x):

1. $L_k(t) = E^{T_k}_D [L(T_{k-1}, T_k) | \mathcal{F}_t]$ coincides with the classically defined forward rate in the limit case of a single curve:

$$E^{T_k}_D [L(T_{k-1}, T_k) | \mathcal{F}_t] = E^{T_k}_D [F_D(T_{k-1}; T_{k-1}, T_k) | \mathcal{F}_t]$$

$$= \frac{1}{\tau_k} E^{T_k}_D \left[\frac{P_D(t, T_{k-1}) - P_D(t, T_k)}{P_D(t, T_k)} \right] = F_D(t; T_{k-1}, T_k)$$

2. $L_k(T_{k-1})$ coincides with the LIBOR $L(T_{k-1}, T_k)$:

$$L_k(T_{k-1}) = E^{T_k}_D [L(T_{k-1}, T_k) | \mathcal{F}_{T_{k-1}}] = L(T_{k-1}, T_k)$$

3. $L_k(0)$ can be stripped from market data.

4. $L_k(t)$ is a martingale under the corresponding OIS forward measure.

5. This definition allows for a natural extension of the market formulas for swaps, caps and swaptions.
Definitions in the multi-curve world
LIBOR-OIS basis spreads

Explicit modeling:
- Additive spreads (e.g. M., 2009; Fujii et al., 2009; Amin, 2010)

\[S^x_k(t) := L^x_k(t) - F^x_k(t), \quad k = 1, \ldots, M. \]

- Multiplicative spreads (e.g. Henrard, 2007, 2009)

\[1 + \tau_k S^x_k(t) := \frac{1 + \tau_k L^x_k(t)}{1 + \tau_k F^x_k(t)}, \quad k = 1, \ldots, M. \]

- Instantaneous spreads (e.g. Andersen and Piterbarg, 2010)

\[P_L(t, T) = P_D(t, T) \int_t^T s(u) \, du \]
Definitions in the multi-curve world
LIBOR-OIS basis spreads

- **Explicit modeling:**
 - Additive spreads (e.g. M., 2009; Fujii et al., 2009; Amin, 2010)
 \[S_x^k(t) := L_x^k(t) - F_x^k(t), \quad k = 1, \ldots, M. \]
 - Multiplicative spreads (e.g. Henrard, 2007, 2009)
 \[1 + \tau_k S_x^k(t) := \frac{1 + \tau_k L_x^k(t)}{1 + \tau_k F_x^k(t)}, \quad k = 1, \ldots, M. \]
 - Instantaneous spreads (e.g. Andersen and Piterbarg, 2010)
 \[P_L(t, T) = P_D(t, T) e^{\int_t^T s(u) \, du} \]

- **Implicit modeling:**
 One models the joint evolution of OIS rates and x-curve rates (e.g. M., 2010; Brace, 2010; Kenyon, 2010; Moreni and Pallavicini, 2011; Torrealba, 2011), or risk-free rates and credit events (e.g. Morini, 2012; Filipovic and Trolle, 2012).
The valuation of an interest rate swap (IRS)

- We consider an IRS whose floating leg pays at T_k, $k = a, \ldots, b$, the LIBOR with tenor $T_k - T_{k-1} = x$, which is set (in advance) at T_{k-1}:

$$\tau_k L(T_{k-1}, T_k)$$

- The time-t value of this payoff is:

$$\tau_k P_D(t, T_k) E^T_{D} \left[L(T_{k-1}, T_k) | \mathcal{F}_t \right] = \tau_k P_D(t, T_k) L^x_k(t)$$
The valuation of an interest rate swap (IRS)

- We consider an IRS whose floating leg pays at T_k, $k = a, \ldots, b$, the LIBOR with tenor $T_k - T_{k-1} = x$, which is set (in advance) at T_{k-1}:

$$\tau_k L(T_{k-1}, T_k)$$

- The time-t value of this payoff is:

$$\tau_k P_D(t, T_k) E_D^{T_k} [L(T_{k-1}, T_k) | \mathcal{F}_t] = \tau_k P_D(t, T_k) L^x_k(t)$$

- The swap’s fixed leg is assumed to pay the fixed rate K on dates T'_{c}, \ldots, T'_{d}, with year fractions τ'_j.

- The IRS value to the fixed-rate payer is given by

$$\text{IRS}(t, K) = \sum_{k=a+1}^{b} \tau_k P_D(t, T_k) L^x_k(t) - K \sum_{j=c+1}^{d} \tau'_j P_D(t, T'_j)$$
The valuation of interest rate swaps

- The corresponding forward swap rate is the fixed rate K that makes the IRS value equal to zero at time t:

$$S_{a,b,c,d}(t) = \frac{\sum_{k=a+1}^{b} \tau_k P_D(t, T_k) L_k^x(t)}{\sum_{j=c+1}^{d} \tau_j' P_D(t, T'_j)}$$

<table>
<thead>
<tr>
<th>Swap rate</th>
<th>Formulas</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLD</td>
<td>$\frac{\sum_{k=1}^{b} \tau_k P(0, T_k) F_k^x(0)}{\sum_{j=1}^{d} \tau_j' P(0, T'j)} = \frac{1-P(0,T_b)}{\sum{j=1}^{d} \tau_j' P(0, T'_j)}$</td>
</tr>
<tr>
<td>NEW</td>
<td>$\frac{\sum_{k=1}^{b} \tau_k P_D(0, T_k) L_k^x(0)}{\sum_{j=1}^{d} \tau_j' P_D(0, T'_j)}$</td>
</tr>
</tbody>
</table>
Dual-curve vs single-curve stripping
USD 3m forward rates
The valuation of caplets

Let us consider a caplet paying out at time T_k:

$$\tau_k [L(T_{k-1}, T_k) - K]^+$$
The valuation of caplets

- Let us consider a caplet paying out at time T_k:
 \[\tau_k [L(T_{k-1}, T_k) - K]^+ \]

- The caplet price at time t is given by:
 \[
 \text{Cplt}(t, K; T_{k-1}, T_k) = \tau_k P_D(t, T_k) E_D^{T_k} \{ [L(T_{k-1}, T_k) - K]^+ | \mathcal{F}_t \}
 = \tau_k P_D(t, T_k) E_D^{T_k} \{ [L^x(T_{k-1}) - K]^+ | \mathcal{F}_t \}
 \]
The valuation of caplets

- Let us consider a caplet paying out at time T_k:

$$\tau_k[L(T_{k-1}, T_k) - K]^+$$

- The caplet price at time t is given by:

$$C_{\text{plt}}(t, K; T_{k-1}, T_k) = \tau_k P_D(t, T_k) E^{T_k}_D \{ [L(T_{k-1}, T_k) - K]^+ | \mathcal{F}_t \}$$

$$= \tau_k P_D(t, T_k) E^{T_k}_D \{ [L^x_k(T_{k-1}) - K]^+ | \mathcal{F}_t \}$$

- The rate $L^x_k(t) = E^{T_k}_D [L(T_{k-1}, T_k) | \mathcal{F}_t]$ is, by definition, a martingale under the OIS forward measure $Q^{T_k}_D$.
The valuation of caplets

Let us consider a caplet paying out at time T_k:

$$\tau_k[L(T_{k-1}, T_k) - K]^+$$

The caplet price at time t is given by:

$$\text{Cplt}(t, K; T_{k-1}, T_k) = \tau_k P_D(t, T_k) E_{T_k}^T \{ [L(T_{k-1}, T_k) - K]^+ | \mathcal{F}_t \}$$

$$= \tau_k P_D(t, T_k) E_{T_k}^T \{ [L^x_k(T_{k-1}) - K]^+ | \mathcal{F}_t \}$$

The rate $L_k^x(t) = E_{T_k}^T [L(T_{k-1}, T_k) | \mathcal{F}_t]$ is, by definition, a martingale under the OIS forward measure $Q_{T_k}^T$.

Let us assume that L_k^x follows a (driftless) geometric Brownian motion under $Q_{T_k}^T$.

Straightforward calculations lead to a (modified) Black formula for caplets.
A payer swaption gives the right to enter at time $T_a = T'_c$ an IRS with payment times for the floating and fixed legs given by T_{a+1}, \ldots, T_b and T'_{c+1}, \ldots, T'_d, respectively.
The valuation of European swaptions

- A payer swaption gives the right to enter at time $T_a = T'_c$ an IRS with payment times for the floating and fixed legs given by T_{a+1}, \ldots, T_b and T'_{c+1}, \ldots, T'_{d}, respectively.

- Therefore, the swaption payoff at time $T_a = T'_c$ is

$$[S_{a,b,c,d}(T_a) - K]^+ \sum_{j=c+1}^{d} \tau'_j P_D(T'_c, T'_j)$$

where K is the fixed rate and

$$S_{a,b,c,d}(t) = \frac{\sum_{k=a+1}^{b} \tau_k P_D(t, T_k) L_k^x(t)}{C_{D}^{c,d}(t)}$$

$$C_{D}^{c,d}(t) = \sum_{j=c+1}^{d} \tau'_j P_D(t, T'_j)$$
The valuation of swaptions

- The swaption payoff is conveniently priced under the swap measure \(Q_D^{c,d} \), whose associated numeraire is \(C_D^{c,d}(t) \):

\[
\text{PS}(t, K; T_a, \ldots, T_b, T_{c+1}', \ldots, T_d') = \sum_{j=c+1}^{d} \tau_j' P_D(t, T_j') \\
\cdot E_{Q_D}^{c,d} \left\{ \left[S_{a,b,c,d}(T_a) - K \right]^+ \sum_{j=c+1}^{d} \tau_j' P_D(T_c', T_j') \middle| \mathcal{F}_t \right\} \frac{C_D^{c,d}(T_c')}{C_D^{c,d}(T_c)} \right. \\
= \sum_{j=c+1}^{d} \tau_j' P_D(t, T_j') E_{Q_D}^{c,d} \left\{ \left[S_{a,b,c,d}(T_a) - K \right]^+ \middle| \mathcal{F}_t \right\}
\]
The valuation of swaptions

- The swaption payoff is conveniently priced under the swap measure $Q_{D}^{c, d}$, whose associated numeraire is $C_{D}^{c, d}(t)$:

$$PS(t, K; T_a, \ldots, T_b, T'_{c+1}, \ldots, T'_d) = \sum_{j=c+1}^{d} \tau'_j P_D(t, T'_j)$$

$$E_{Q_{D}^{c, d}} \left\{ \frac{[S_{a, b, c, d}(T_a) - K]^{+} \sum_{j=c+1}^{d} \tau'_j P_D(T'_c, T'_j)}{C_{D}^{c, d}(T'_c)} \mid F_t \right\}$$

$$= \sum_{j=c+1}^{d} \tau'_j P_D(t, T'_j) E_{Q_{D}^{c, d}} \left\{ [S_{a, b, c, d}(T_a) - K]^{+} \mid F_t \right\}$$

- Hence, also in a multi-curve set up, pricing a swaption is equivalent to pricing an option on the underlying swap rate.

- Assuming that $S_{a, b, c, d}$ is a lognormal martingale under $Q_{D}^{c, d}$, we obtain a (modified) Black formula for swaptions.
The new market formulas for caps and swaptions

<table>
<thead>
<tr>
<th>Type</th>
<th>Formulas</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLD Cplt</td>
<td>$\tau_k P(t, T_k) \ Bl(K, F^x_k(t), v_k \sqrt{T_{k-1} - t})$</td>
</tr>
<tr>
<td>NEW Cplt</td>
<td>$\tau_k P_D(t, T_k) \ Bl(K, L^x_k(t), \bar{v}k \sqrt{T{k-1} - t})$</td>
</tr>
<tr>
<td>OLD PS</td>
<td>$\sum_{j=c+1}^{d} \tau'_j P(t, T'j) \ Bl(K, S{OLD}(t), \nu \sqrt{T_a - t})$</td>
</tr>
<tr>
<td>NEW PS</td>
<td>$\sum_{j=c+1}^{d} \tau'_j P_D(t, T'j) \ Bl(K, S{NEW}(t), \bar{\nu} \sqrt{T_a - t})$</td>
</tr>
</tbody>
</table>
The new market formulas for caps and swaptions
OIS vs LIBOR discounting

USD Xy10y OIS-based swaption vols

USD Xy10y LIBOR-based swaption vols
Pricing general interest rate derivatives

- We just showed how to value swaps, caps, and swaptions under the assumption of distinct discount (OIS) and forward curves.

- What about exotics?

 The pricing of general interest rate derivatives should be consistent with the practice of using OIS discounting. In fact:

 - A Bermudan swaption should be more expensive than the underlying European swaptions. In addition, on the last exercise date, a Bermudan swaption becomes a European swaption.

 - A one-period ratchet is equal to a caplet.

 Etc ...

- We must forsake the traditional single-curve models and switch to a multi-curve framework.
Pricing general interest rate derivatives

- We just showed how to value swaps, caps, and swaptions under the assumption of distinct discount (OIS) and forward curves.

- What about exotics?
We just showed how to value swaps, caps, and swaptions under the assumption of distinct discount (OIS) and forward curves.

What about exotics?

The pricing of general interest rate derivatives should be consistent with the practice of using OIS discounting. In fact:

- A Bermudan swaption should be more expensive than the underlying European swaptions. In addition, on the last exercise date, a Bermudan swaption becomes a European swaption.
- A one-period ratchet is equal to a caplet.
- Etc ...
Pricing general interest rate derivatives

- We just showed how to value swaps, caps, and swaptions under the assumption of distinct discount (OIS) and forward curves.

- What about exotics?

- The pricing of general interest rate derivatives should be consistent with the practice of using OIS discounting. In fact:
 - A Bermudan swaption should be more expensive than the underlying European swaptions. In addition, on the last exercise date, a Bermudan swaption becomes a European swaption.
 - A one-period ratchet is equal to a caplet.
 - Etc ...

- We must forsake the traditional single-curve models and switch to a multi-curve framework.
How do we build a multi-curve model?

- Interest-rate multi-curve modeling is based on modeling the joint evolution of a discount (OIS) curve and multiple forward (LIBOR) curves.
How do we build a multi-curve model?

- Interest-rate multi-curve modeling is based on modeling the joint evolution of a discount (OIS) curve and multiple forward (LIBOR) curves.

- Most banks are currently using a deterministic basis set-up. They choose a model for the OIS curve (short-rate, HJM, LMM, ...), and then build the forward LIBOR curves at a deterministic spread over the OIS curve, thus assuming $S^x_k(t) \equiv S^x_k(0)$, for each k and x.

In general, forward curves can be modeled either directly or indirectly by modeling (possibly stochastic) basis spreads.
How do we build a multi-curve model?

- Interest-rate multi-curve modeling is based on modeling the joint evolution of a discount (OIS) curve and multiple forward (LIBOR) curves.

- Most banks are currently using a deterministic basis set-up. They choose a model for the OIS curve (short-rate, HJM, LMM, ...), and then build the forward LIBOR curves at a deterministic spread over the OIS curve, thus assuming $S^x_k(t) \equiv S^x_k(0)$, for each k and x.

- In general, forward curves can be modeled either directly or indirectly by modeling (possibly stochastic) basis spreads.
How do we build a multi-curve model?

- Interest-rate multi-curve modeling is based on modeling the joint evolution of a discount (OIS) curve and multiple forward (LIBOR) curves.

- Most banks are currently using a deterministic basis set-up. They choose a model for the OIS curve (short-rate, HJM, LMM, ...), and then build the forward LIBOR curves at a deterministic spread over the OIS curve, thus assuming $S^x_k(t) \equiv S^x_k(0)$, for each k and x.

- In general, forward curves can be modeled either directly or indirectly by modeling (possibly stochastic) basis spreads.

- Modeling the OIS curve is necessary for two reasons:
 - Swap rates depend on OIS discount factors.
 - The pricing measures we consider are those defined by the OIS curve.
How do we build a multi-curve model?

- Interest-rate multi-curve modeling is based on modeling the joint evolution of a discount (OIS) curve and multiple forward (LIBOR) curves.

- Most banks are currently using a deterministic basis set-up. They choose a model for the OIS curve (short-rate, HJM, LMM, ...), and then build the forward LIBOR curves at a deterministic spread over the OIS curve, thus assuming \(S^x_k(t) \equiv S^x_k(0) \), for each \(k \) and \(x \).

- In general, forward curves can be modeled either directly or indirectly by modeling (possibly stochastic) basis spreads.

- Modeling the OIS curve is necessary for two reasons:
 - Swap rates depend on OIS discount factors.
 - The pricing measures we consider are those defined by the OIS curve.

- Calculating swaption prices in closed form may be hard in general.
In absence of market shocks, basis spreads tend to be relatively stable:
Deterministic basis models

- In absence of market shocks, basis spreads tend to be relatively stable:

- Therefore, it makes sense to assume that the LIBOR-OIS basis is constant over time.
Deterministic basis models

- In absence of market shocks, basis spreads tend to be relatively stable:

- Therefore, it makes sense to assume that the LIBOR-OIS basis is constant over time.

- We consider a tenor x and an associated time structure $\mathcal{T} = \{0 < T_0, \ldots, T_M\}$, with $T_k - T_{k-1} = x$, $k = 1, \ldots, M$.
Deterministic basis models

- In a deterministic and additive basis model one start by modeling OIS rates.

\[
L_x^k(t) = F_x^k(t) + S_x^k(t), \quad k = 1, \ldots, M
\]

where, for \(k = 1, \ldots, M \), the OIS forward rates \(F_x^k \) are defined as in the classic single-curve paradigm, namely:

\[
F_x^k(t) := F_{D}(t; T_{k-1}, T_k) = \tau_k \left[P_{D}(t, T_{k-1}) - 1 \right]
\]

and the additive basis \(S_x^k \) is deterministic and given by:

\[
S_x^k(t) = S_x^k(0) = L_x^k(0) - F_x^k(0)
\]

The pricing of caps is straightforward. The pricing of swaptions is more complex, but presents little difficulty.
Deterministic basis models

- In a deterministic and additive basis model one start by modeling OIS rates.
- Then one defines LIBOR rates by setting:

\[L^x_k(t) = F^x_k(t) + S^x_k(t), \quad k = 1, \ldots, M \]

where, for \(k = 1, \ldots, M \), the OIS forward rates \(F^x_k \) are defined as in the classic single-curve paradigm, namely:

\[F^x_k(t) := F_D(t; T_{k-1}, T_k) = \frac{1}{\tau_k} \left[\frac{P_D(t, T_{k-1})}{P_D(t, T_k)} - 1 \right] \]

and the additive basis \(S^x_k \) is deterministic and given by:

\[S^x_k(t) = S^x_k(0) = L^x_k(0) - F^x_k(0) \]
Deterministic basis models

- In a deterministic and additive basis model one start by modeling OIS rates.
- Then one defines LIBOR rates by setting:

\[
L^x_k(t) = F^x_k(t) + S^x_k(t), \quad k = 1, \ldots, M
\]

where, for \(k = 1, \ldots, M \), the OIS forward rates \(F^x_k \) are defined as in the classic single-curve paradigm, namely:

\[
F^x_k(t) := F_D(t; T_{k-1}, T_k) = \frac{1}{\tau_k} \left[\frac{P_D(t, T_{k-1})}{P_D(t, T_k)} - 1 \right]
\]

and the additive basis \(S^x_k \) is deterministic and given by:

\[
S^x_k(t) = S^x_k(0) = L^x_k(0) - F^x_k(0)
\]

- The pricing of caps is straightforward. The pricing of swaptions is more complex, but presents little difficulty.
Should one model stochastic basis spreads?

- The fact that a model parameter evolves stochastically does not imply that it must be modeled as stochastic.
Should one model stochastic basis spreads?

- The fact that a model parameter evolves stochastically does not imply that it must be modeled as stochastic.
- Do we need to model stochastic basis spreads?

Obviously, we do not have to if, for instance, we price a cap. We clearly have to if we price an option on the LIBOR-OIS basis. But what about non-trivial examples? Bermudan swaptions, CMS spread options, resattable cross-currency swaptions, EUR cash-settled swaptions...
Should one model stochastic basis spreads?

- The fact that a model parameter evolves stochastically does not imply that it must be modeled as stochastic.

- Do we need to model stochastic basis spreads?

- Obviously, we do not have to if, for instance, we price a cap.
Should one model stochastic basis spreads?

- The fact that a model parameter evolves stochastically does not imply that it must be modeled as stochastic.
- Do we need to model stochastic basis spreads?
- Obviously, we do not have to if, for instance, we price a cap.
- We clearly have to if we price an option on the LIBOR-OIS basis.
Should one model stochastic basis spreads?

- The fact that a model parameter evolves stochastically does not imply that it must be modeled as stochastic.

- Do we need to model stochastic basis spreads?

- Obviously, we do not have to if, for instance, we price a cap.

- We clearly have to if we price an option on the LIBOR-OIS basis.

- But what about non-trivial examples?
 - Bermudan swaptions
 - CMS spread options
 - Resattable cross-currency swaptions
 - EUR cash-settled swaptions
 - ...
Should one model stochastic basis spreads?

- The fact that a model parameter evolves stochastically does not imply that it must be modeled as stochastic.

- Do we need to model stochastic basis spreads?

- Obviously, we do not have to if, for instance, we price a cap.

- We clearly have to if we price an option on the LIBOR-OIS basis.

- But what about non-trivial examples?
 - Bermudan swaptions
 - CMS spread options
 - Resattalble cross-currency swaptions
 - EUR cash-settled swaptions
 - ...

- Stochastic-basis models can also be introduced for CVA purposes (see next slides).
CVA stands for Credit Valuation Adjustment.
CVA stands for Credit Valuation Adjustment.

It is the adjustment to the “risk-free” value of a derivatives portfolio that remunerates for losses upon default of counterparties.
An introduction to CVA

- CVA stands for Credit Valuation Adjustment.

- It is the adjustment to the “risk-free” value of a derivatives portfolio that remunerates for losses upon default of counterparties.

- Unilateral CVA is the CVA that focuses on counterparty’s default, and excludes our own.
An introduction to CVA

- CVA stands for Credit Valuation Adjustment.

- It is the adjustment to the “risk-free” value of a derivatives portfolio that remunerates for losses upon default of counterparties.

- Unilateral CVA is the CVA that focuses on counterparty’s default, and excludes our own.

- Assuming no CSA, unilateral CVA is given by:

\[
CVA = (1 - R)\mathbb{E}[1_{\{\tau \leq T\}}D(0, \tau)V_{\tau}^+]
\]

where
- \(R \) is counterparty’s recovery rate
- \(D(0, t) \) is the discount factor: \(D(0, t) = \exp\{-\int_0^t r(u) \, du\} \)
- \(\tau \) is counterparty’s default time
- \(V_t \) is the portfolio value at time \(t \)
An introduction to CVA

- We repeat the CVA formula:

\[
CVA = (1 - R) \mathbb{E} \left[1_{\{\tau \leq T\}} D(0, \tau) V_T^+ \right]
\]
An introduction to CVA

- We repeat the CVA formula:

\[
CVA = (1 - R) \mathbb{E} \left[1_{\{\tau \leq T\}} D(0, \tau) V^+_{\tau} \right]
\]

- When \(\tau \) is independent of \(V_t \) and \(D(0, t) \), CVA can be calculated as:

\[
CVA = (1 - R) \int_0^T \mathbb{E} \left[D(0, t) V^+_{t} \right] f_{\tau}(t) \, dt
\]

where \(f_{\tau} \) denotes the probability density function of \(\tau \).
An introduction to CVA

- We repeat the CVA formula:
 \[
 \text{CVA} = (1 - R) \mathbb{E} \left[1_{\{\tau \leq T\}} D(0, \tau) V_{\tau}^+ \right]
 \]

- When \(\tau \) is independent of \(V_t \) and \(D(0, t) \), CVA can be calculated as:
 \[
 \text{CVA} = (1 - R) \int_0^T \mathbb{E} \left[D(0, t)V_{t}^+ \right] f_\tau(t) \, dt
 \]
 where \(f_\tau \) denotes the probability density function of \(\tau \).

- In general, one may want to assume a non-zero correlation between \(\tau \) and market risk factors, thus modeling Wrong-Way Risk (WWR). In this case the CVA formula becomes:
 \[
 \text{CVA} = (1 - R) \int_0^T \mathbb{E} \left[D(0, t)V_{t}^+ | \tau = t \right] f_\tau(t) \, dt
 \]
CVA of a portfolio of interest-rate deals

- Are interest rates and counterparty’s default independent or correlated?
- To put it differently, what happens to interest rates when a counterparty defaults?
Are interest rates and counterparty’s default independent or correlated?

To put it differently, what happens to interest rates when a counterparty defaults?
CVA of a portfolio of interest-rate deals

- Are interest rates and counterparty’s default independent or correlated?
- To put it differently, what happens to interest rates when a counterparty defaults?

- It appears that interest rates jump at default (of a large counterparty).
- But, which rates really jump?
Multi-curve modeling for CVA purposes

- Inspired by historical evidence, M. and Li. (2015) assumed that basis spreads $S^x_k(t)$ jump at counterparty’s default, and that they evolve according to:

$$dS^x_k(t) = J^x_k(t) 1_{\{t \leq \tau\}} (-\lambda dt + dN_t)$$

where N is a Poisson process with constant intensity λ.

OIS rates can be assumed to follow any classic single-curve model. LIBORs can then be obtained using:

$$L^x_k(t) = F^x_k(t) + S^x_k(t)$$
Inspired by historical evidence, M. and Li. (2015) assumed that basis spreads $S^x_k(t)$ jump at counterparty’s default, and that they evolve according to:

$$dS^x_k(t) = J^x_k(t) 1\{t \leq \tau\} (-\lambda dt + dN_t)$$

where N is a Poisson process with constant intensity λ.

For simplicity, we here set $J^x_k(t) \equiv J$, so that (for $t \leq T_{k-1}$):

$$S^x_k(t) = S^x_k(0) + \begin{cases} -\lambda J t & t < \tau \\ -\lambda J \tau + J & t \geq \tau \end{cases}$$

OIS rates can be assumed to follow any classic single-curve model. LIBORs can then be obtained using:

$$L^x_k(t) = F^x_k(t) + S^x_k(t)$$
Multi-curve modeling for CVA purposes

Inspired by historical evidence, M. and Li. (2015) assumed that basis spreads $S_k^x(t)$ jump at counterparty’s default, and that they evolve according to:

$$dS_k^x(t) = J_k^x(t) 1_{\{t \leq \tau\}} (-\lambda \, dt + dN_t)$$

where N is a Poisson process with constant intensity λ.

For simplicity, we here set $J_k^x(t) \equiv J$, so that (for $t \leq T_{k-1}$):

$$S_k^x(t) = S_k^x(0) + \begin{cases}
-\lambda J t & t < \tau \\
-\lambda J \tau + J & t \geq \tau
\end{cases}$$

OIS rates can be assumed to follow any classic single-curve model.

LIBORs can then be obtained using:

$$L_k^x(t) = F_k^x(t) + S_k^x(t)$$
Multi-curve modeling for CVA purposes

- We denote by V_t the portfolio’s value at time t.

- We assume that V_t is a function of LIBORs $L^x_i(t)$ with $T_i > t$.

\[b^x_i(t) := \begin{cases}
S^x_i(0) - \lambda (T_i - 1) & \text{if } T_i - 1 < t \\
S^x_i(0) + \lambda J t & \text{if } T_i - 1 > t
\end{cases} \]

which is the time-t basis conditional on default happening at time t.

We define $b(t)$ to be the vector of all $b^x_i(t)$'s with ending date $T_i > t$.

Similarly, $F(t)$ denotes the vector of forward rates $F^x_i(t)$ with $T_i > t$.
Multi-curve modeling for CVA purposes

- We denote by V_t the portfolio’s value at time t.

- We assume that V_t is a function of LIBORs $L_i^x(t)$ with $T_i > t$.

- For any $i = 1, \ldots, M$ and $t \geq 0$, we set:

$$b_i^x(t) := \begin{cases}
S_i^x(0) - \lambda JT_{i-1} & \text{if } T_{i-1} < t \\
S_i^x(0) + J - \lambda Jt & \text{if } T_{i-1} > t
\end{cases}$$

which is the time-t basis conditional on default happening at time t.
We denote by V_t the portfolio’s value at time t.

We assume that V_t is a function of LIBORs $L^x_i(t)$ with $T_i > t$.

For any $i = 1, \ldots, M$ and $t \geq 0$, we set:

$$b^x_i(t) := \begin{cases} S^x_i(0) - \lambda JT_{i-1} & \text{if } T_{i-1} < t \\ S^x_i(0) + J - \lambda Jt & \text{if } T_{i-1} > t \end{cases}$$

which is the time-t basis conditional on default happening at time t.

We define $b(t)$ to be the vector of all $b^x_i(t)$’s with ending date $T_i > t$.

Similarly, $F(t)$ denotes the vector of forward rates $F^x_i(t)$ with $T_i > t$.

Calculating CVA for a portfolio of European-style interest-rate deals

- With some abuse of notation, we write:

\[
V_t = V(t, b(t), F(t))
\]

- The WWR CVA formula is then given by

\[
\text{CVA}_{\text{WWR}} = (1 - R) \int_0^T \mathbb{E}\left[D(0, t) V(t, b(t), F(t))^+\right] \lambda e^{-\lambda t} dt
\]
Calculating CVA for a portfolio of European-style interest-rate deals

- With some abuse of notation, we write:

\[V_t = V(t, b(t), F(t)) \]

- The WWR CVA formula is then given by

\[\text{CVA}_{\text{WWR}} = (1 - R) \int_0^T \mathbb{E}[D(0, t) V(t, b(t), F(t))^+] \lambda e^{-\lambda t} \, dt \]

- We call independent CVA the CVA obtained by setting \(J = 0 \). Denoting by \(B(t) \) the vector of initial basis spreads \(S_i^x(0) \) with \(T_i > t \), we get

\[\text{CVA}_{\text{IND}} = (1 - R) \int_0^T \mathbb{E}[D(0, t) V(t, B(t), F(t))^+] \lambda e^{-\lambda t} \, dt \]
Calculating CVA for a portfolio of European-style interest-rate deals

- We derive two CVA approximations by adjusting the initial basis vector.
Calculating CVA for a portfolio of European-style interest-rate deals

- We derive two CVA approximations by adjusting the initial basis vector.
- The first approximation is based on neglecting λJ terms in vector $b(t)$:

$$b_{i}^{x}(t) \approx \begin{cases}
S_{i}(0) & \text{if } T_{i-1} < t \\
S_{i}(0) + J & \text{if } T_{i-1} > t
\end{cases}$$
Calculating CVA for a portfolio of European-style interest-rate deals

- We derive two CVA approximations by adjusting the initial basis vector.
- The first approximation is based on neglecting λJ terms in vector $b(t)$:

$$b_i^x(t) \approx \begin{cases} S_i^x(0) & \text{if } T_{i-1} < t \\ S_i^x(0) + J & \text{if } T_{i-1} > t \end{cases}$$

- Pretending that the prompt basis jumps as well, we get:

$$\text{CVA}_{\text{WWR}}(B(0)) \approx \text{CVA}_{\text{IND}}(\bar{B}(0))$$

where

$$\bar{B}(0) = B(0) + J$$
Calculating CVA for a portfolio of European-style interest-rate deals

- We derive two CVA approximations by adjusting the initial basis vector.
- The first approximation is based on neglecting λJ terms in vector $b(t)$:

$$
\begin{align*}
 b^x_i(t) &\approx \begin{cases}
 S^x_i(0) & \text{if } T_{i-1} < t \\
 S^x_i(0) + J & \text{if } T_{i-1} > t
 \end{cases}
\end{align*}
$$

- Pretending that the prompt basis jumps as well, we get:

$$
\text{CVA}_{WWR}(\mathbf{B}(0)) \approx \text{CVA}_{IND}(\bar{\mathbf{B}}(0))
$$

where

$$
\bar{\mathbf{B}}(0) = \mathbf{B}(0) + J
$$

- So, as a rule of thumb, CVA can be obtained by shifting upwards the initial basis curve in the independent CVA model.
Calculating CVA for a portfolio of European-style interest-rate deals

- The above approximation does not take into account the drift correction coming from the compensated Poisson process.
- A better approximation is based on replacing the time-dependent drift term λJt with a constant (non-zero) one.
Calculating CVA for a portfolio of European-style interest-rate deals

- The above approximation does not take into account the drift correction coming from the compensated Poisson process.
- A better approximation is based on replacing the time-dependent drift term λJ_t with a constant (non-zero) one.
- To this end, for each basis $S^x_{i+1}(t)$, we define the effective default time $\bar{\tau}_{i+1}$ by

$$
\bar{\tau}_{i+1} := \mathbb{E}[\tau | \tau < T_i] = \frac{e^{\lambda T_i} - 1 - \lambda T_i}{\lambda (e^{\lambda T_i} - 1)} \approx \frac{T_i}{2} - \frac{\lambda T_i^2}{12}
$$
Calculating CVA for a portfolio of European-style interest-rate deals

- The above approximation does not take into account the drift correction coming from the compensated Poisson process.
- A better approximation is based on replacing the time-dependent drift term $\lambda J t$ with a constant (non-zero) one.
- To this end, for each basis $S_{i+1}^x(t)$, we define the effective default time $\bar{\tau}_{i+1}$ by

$$\bar{\tau}_{i+1} := \mathbb{E}[\tau | \tau < T_i] = \frac{e^{\lambda T_i} - 1 - \lambda T_i}{\lambda(e^{\lambda T_i} - 1)} \approx \frac{T_i}{2} - \frac{\lambda T_i^2}{12}$$

- Our second approximation then reads as:

$$\text{CVA}_{WWR}(B(0)) \approx \text{CVA}_{IND}(\bar{B}(0) - \lambda J \bar{\tau})$$

where

$$\bar{\tau} := \{\bar{\tau}_1, \ldots, \bar{\tau}_M\}$$
A numerical example: CVA of an interest rate swap

- We consider an ATM 20-year payer interest rate swap (market data as of March 13, 2013).
- Features: the notional is USD 1000, the fixed rate is 2.90%, fixed-leg payments are semi-annual, floating-leg’s quarterly.
- We assume that the instantaneous OIS rate follows a one-factor Hull-White (1990) model:

\[
\text{d} r(t) = \kappa [\vartheta(t) - r(t)] \text{d} t + \sigma \text{d} W(t)
\]

where we set \(\kappa = 0.03 \) and \(\sigma = 0.005 \).

<table>
<thead>
<tr>
<th>\lambda</th>
<th>0.01</th>
<th>0.02</th>
<th>0.03</th>
<th>0.04</th>
<th>0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>16.33</td>
<td>30.17</td>
<td>41.88</td>
<td>51.78</td>
<td>60.13</td>
</tr>
<tr>
<td>0.0025</td>
<td>17.65</td>
<td>32.51</td>
<td>45.00</td>
<td>55.47</td>
<td>64.24</td>
</tr>
<tr>
<td>0.0050</td>
<td>19.06</td>
<td>35.01</td>
<td>48.32</td>
<td>59.43</td>
<td>68.66</td>
</tr>
<tr>
<td>0.0075</td>
<td>20.55</td>
<td>37.65</td>
<td>51.85</td>
<td>63.62</td>
<td>73.35</td>
</tr>
<tr>
<td>0.0100</td>
<td>22.12</td>
<td>40.42</td>
<td>55.55</td>
<td>68.02</td>
<td>78.29</td>
</tr>
</tbody>
</table>

Table: Exact CVA.
A numerical example: CVA of an interest rate swap

<table>
<thead>
<tr>
<th>$J \setminus \lambda$</th>
<th>0.01</th>
<th>0.02</th>
<th>0.03</th>
<th>0.04</th>
<th>0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>16.33</td>
<td>30.17</td>
<td>41.88</td>
<td>51.78</td>
<td>60.13</td>
</tr>
<tr>
<td>0.0025</td>
<td>17.74</td>
<td>32.83</td>
<td>45.64</td>
<td>56.52</td>
<td>65.75</td>
</tr>
<tr>
<td>0.005</td>
<td>19.24</td>
<td>35.66</td>
<td>49.67</td>
<td>61.61</td>
<td>71.78</td>
</tr>
<tr>
<td>0.0075</td>
<td>20.83</td>
<td>38.67</td>
<td>53.93</td>
<td>67</td>
<td>78.19</td>
</tr>
<tr>
<td>0.01</td>
<td>22.5</td>
<td>41.82</td>
<td>58.42</td>
<td>72.68</td>
<td>84.93</td>
</tr>
</tbody>
</table>

Table: First CVA approximation. Exact values between ().

<table>
<thead>
<tr>
<th>$J \setminus \lambda$</th>
<th>0.01</th>
<th>0.02</th>
<th>0.03</th>
<th>0.04</th>
<th>0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>16.33</td>
<td>30.17</td>
<td>41.88</td>
<td>51.78</td>
<td>60.13</td>
</tr>
<tr>
<td>0.0025</td>
<td>17.65</td>
<td>32.51</td>
<td>44.99</td>
<td>55.46</td>
<td>64.23</td>
</tr>
<tr>
<td>0.005</td>
<td>19.06</td>
<td>34.99</td>
<td>48.28</td>
<td>59.35</td>
<td>68.56</td>
</tr>
<tr>
<td>0.0075</td>
<td>20.54</td>
<td>37.6</td>
<td>51.75</td>
<td>63.46</td>
<td>73.11</td>
</tr>
<tr>
<td>0.01</td>
<td>22.09</td>
<td>40.34</td>
<td>55.38</td>
<td>67.74</td>
<td>77.87</td>
</tr>
</tbody>
</table>

Table: Second CVA approximation. Exact values between ().
Conclusions

- We started by describing the changes in market interest rate quotes which have occurred since August 2007.
Conclusions

- We started by describing the changes in market interest rate quotes which have occurred since August 2007.
- We have also described the market practice of using OIS discounting in the valuation of the main interest rate derivatives.
Conclusions

- We started by describing the changes in market interest rate quotes which have occurred since August 2007.
- We have also described the market practice of using OIS discounting in the valuation of the main interest rate derivatives.
- We have shown how to price swaps, caps and swaptions under the assumption of two distinct curves for generating future LIBOR rates and for discounting.
Conclusions

- We started by describing the changes in market interest rate quotes which have occurred since August 2007.
- We have also described the market practice of using OIS discounting in the valuation of the main interest rate derivatives.
- We have shown how to price swaps, caps and swaptions under the assumption of two distinct curves for generating future LIBOR rates and for discounting.
- The pricing formulas for caps and swaptions result in a simple modification of the corresponding Black formulas used by the market in the single-curve setting.
Conclusions

- We started by describing the changes in market interest rate quotes which have occurred since August 2007.
- We have also described the market practice of using OIS discounting in the valuation of the main interest rate derivatives.
- We have shown how to price swaps, caps and swaptions under the assumption of two distinct curves for generating future LIBOR rates and for discounting.
- The pricing formulas for caps and swaptions result in a simple modification of the corresponding Black formulas used by the market in the single-curve setting.
- Interest rate models are then extended to the multi-curve case by modeling basis spreads.
Conclusions

- We started by describing the changes in market interest rate quotes which have occurred since August 2007.
- We have also described the market practice of using OIS discounting in the valuation of the main interest rate derivatives.
- We have shown how to price swaps, caps and swaptions under the assumption of two distinct curves for generating future LIBOR rates and for discounting.
- The pricing formulas for caps and swaptions result in a simple modification of the corresponding Black formulas used by the market in the single-curve setting.
- Interest rate models are then extended to the multi-curve case by modeling basis spreads.
- Finally, we have introduced a jump-at-default multi-curve model for calculating the CVA of a portfolio of IR deals.