Modeling of Mortgage Prepayments and Defaults

Lakhbir Hayre
Managing Director
Fixed Income Quantitative Analysis
Citigroup Global Markets

September 25, 2006
Topics

• An Overview of the Mortgage Market

• Challenges in Prepayment and Default Modeling

• Implications for Valuation of Mortgage-Backed Securities
The US Mortgage Market --
Colossus of the Bond World

<table>
<thead>
<tr>
<th>Category</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Mortgage Debt</td>
<td>$12.3 trillion</td>
</tr>
<tr>
<td>Single-Family Mortgage Debt</td>
<td>$9.5 trillion</td>
</tr>
<tr>
<td>Mortgage-Backed Securities</td>
<td>$6.2 trillion</td>
</tr>
<tr>
<td>Asset-Backed Securities</td>
<td>$2.0 trillion</td>
</tr>
<tr>
<td>US Treasuries</td>
<td>$4.2 trillion</td>
</tr>
<tr>
<td>Corporate Bonds</td>
<td>$5.2 trillion</td>
</tr>
<tr>
<td>Municipals</td>
<td>$2.3 trillion</td>
</tr>
</tbody>
</table>

What are Mortgage Securities?

- A number of mortgage loans - from a few dozen to more than 10,000 - are pooled;

- Each loan pays interest and principal until it matures, is prepaid, or goes into default;

- Cashflows from the loans are paid to investors, after subtraction of administrative (or *servicing*) fees;

- Cashflows are either simply passed on to investors (*pass-through securities*) or allocated according to specified rules (*structured securities*, such as *Collateralized Mortgage Obligations (CMOs)*).
Basic Security Features

• Cashflows are monthly, unlike Treasures or corporate bonds, which pay semi-annually;

• Amortizing assets => principal paid out over a period of time;

• For pass-throughs, each monthly payment will tend to include some principal;

• For structured MBS/ABS, principal paid out over a principal window

• Prepayment of principal by borrowers
 – call risk key property of many MBS/ABS
 – durations much shorter than similar maturity bullet security.
Basic MBS is the Pass-Through

• Issued by FHLMC, FNMA, GNMA and Private Entities

• Many mortgages with similar characteristics collected into a pool

• Investor receives pro-rata share of monthly payments

• Interest and principal payments are guaranteed by the issuing agency, or through credit enhancements (for private issuers)
Structure of a Pass-Through

Borrower pays 6.5% + principal payments

Investor receives coupon payments of 6% + principal payments

Fannie/Freddie/Ginnie receives a guarantee fee of 0.15%

Loan servicer receives servicing fee of 0.35%

Source: Citigroup. Actual numbers may vary from pool to pool
Valuation of Mortgage Securities

- MBSs are bonds with embedded options;
- More complex than standard callable bonds:
 - Each $1 is a separate option
 - Option-exercise is inefficient
 - High degree of path dependence
- Prepayment models key to valuation;
- Prepayment models combined with Term Structure Models to obtain “option-adjusted” spreads (OAS).
Basic Steps in Mortgage Valuation

- Generate a “large” number of interest rate paths, both for discounting and for cash flow generation;

- On each path, call a prepayment model/default model to calculate mortgage cash flows;

- Calculate average PV of cash flows, using benchmark rates plus a spread;

- Spread that equates average PV to market price is the option-adjusted spread (OAS).
Prepayment Rates Are Critical in Determining MBS Value

A. Cashflows Assuming No Prepayments

B. Cashflows Assuming a More Realistic Prepayment Rate

Source: Citigroup.
Some Difficulties in Developing Prepayment Models

- A large number of important variables
- Continual innovations in mortgage financing implies constantly changing regimes
- Diverse and changing range of mortgage loan types
- A high degree of path dependence
- Unpredictable and “inefficient” borrower behavior
- Limited historical prepayment data and incomplete information
A Large Number of Factors Impact Prepayment and Default Rates

- **Economic**: Mortgage Rates, Housing Inflation, Consumer Confidence, Unemployment, etc.

- **Loan**: Coupon rate, original term, remaining term, type (Fixed, ARM, Hybrid), loan size, geographical location, etc.

- **Borrower**: Credit, Socio-Economic Status, Personal Situation

- **Other**: Past exposure to refinancing opportunities, mortgage origination and servicing process, etc.
Changing Environment

• Key determinants change over time: closing costs, choice of loan types, mortgage lending industry, loan origination process, etc.

• Borrowers have become more savvy over the years

• Borrower sentiment (or psychology) plays an important role
Changes in the Mortgage Market over Time

Sources: Fannie Mae, Freddie Mac and Citigroup..
The Media Effect Measures Psychological Impact of Multi-Year Lows in Rates

Rates drop 100bp from April to Year End’97, but nothing happens

Rates hit multi-year low

Rates back to early 1998 lows but nothing happens

Rates fall significantly below early 1998 lows

Source: Mortgage Bankers Association, Freddie Mac, Citigroup

Citigroup Global Markets
Loan Type Variation: Term

- **30-Year**: Most common type in the US;
- **15-Year**: Higher monthly payments, so few 1st time home buyers => slower turnover and seasoning ramp. Also common refi vehicle for 30-year mortgages;
- **20-Year**: Attracts borrowers who want a 15-year loan, but cannot afford the higher monthly payments;
- **10-Year**: Mostly people refinancing out of a 15-year loan;
- **40-Year**: A newer product, popular with borrowers stretching to buy a house and who want to minimize the monthly payment.

Notes:

1. For a given difference between the coupons on the current and a new mortgage, the shorter the term, the lower the refinancing incentive;
2. Regardless of the shape of the yield curve, the shorter the term, the lower the mortgage rate.
Loan Type Variation: Coupon

• **Fixed Rate.** Basic mortgage in the US;

• **Adjustable Rate.** Coupon resets periodically at a stated margin over a specified index (typically 1-year Treasury or 6-month LIBOR). Initial coupon often “teased” and much lower than on a fixed-rate loan, so ARMs attract lot of 1st time buyers or other people with short time horizons;

• **Hybrid.** Coupon fixed for the first 3, 5, 7 or 10 years, then adjusts like a standard ARM. The shorter the fixed rate period, the shorter the typical borrower horizon, and the faster the speeds.
Loan Type Variation: Credit

- **Jumbo.** Prime quality loans that are too large for agency pools;

- **Fannie May/Freddie Mac.** Generally prime quality loans that fall below the “conforming limit”;

- **Ginnie Mae.** Loans insured by the FHA or the VA. Relative to FN/FH, poorer credit and lower loan balances.

- **Alternative (Alt) A.** Borrowers are generally moderate to good credit (hence the “A”), but lack “full documentation”

- **Sub-Prime.** Borrowers with poor credit histories.
Loan Type Variation: Other Features

• **Loan Size.** Has a big impact on speeds.

• **Geographical Location.** Ditto.

• **Prepayment Penalties.** Uncommon in prime loans, but prevalent for sub-primes.

• **Amortization Schedule.** Traditional mortgages in the US have been fully amortizing. However, strong growth in recent years in loans which pay interest only for a number of years (eg 10/20), or can even have negative amortization (ie. loan balance can increase), such as *Option ARMs.*
Prepayment Speeds on Prime and Subprime Loans

Citigroup Global Markets
Effect of Loan Balance

Loan Loan Balance (LLB) pools are less reactive to refinancing opportunities, but little difference in turnover speeds

Source: Citigroup.
Significant Differences in Speeds by State

Factors include loan size, closing costs, taxes, home price appreciation, and local economic conditions.

Source: Citigroup.
High Degree of Path Dependence

• Borrowers will differ in their propensity and ability to refinance

• As a pool of borrowers experiences refinancings, most able borrowers leave the pool at higher rates

• Remaining borrowers less responsive (burnout)

• Hence prepayment rates depend on complete history of interest rates
Sources: Freddie Mac and Citigroup.
Inefficient Exercise of the Prepayment Option

Burnout and Media Effect

CPR (%)

WAC — "No Point" Mtg Rate (bp)

Speeds on 2001 Coupons in Jan 2004

Speeds on 2001 Coupons in Jul 2003
History of Prepayment Modeling

• First Generation Models (Salomon, 1985)
 - Standard Multiple Regression Models
 - Many Variables → good historical fit, but not robust over time

• Diversity of Collateral and Borrowers and Continuing Changes in Prepayment Environment Suggests More Fundamental Approach (Salomon, 1995)
 - Sources of Prepayments (Modular Approach)
 - Flexible and Dynamic Inputs and Relationships
Why are Mortgages Prepaid?

- **Housing Turnover** - the sale of a home triggers a prepayment
- **Refinancings** - the loan is refinanced
- **Defaults** - foreclosure on the house leads to the loan being paid off
- **Curtailments** (or partial prepayments) - borrowers make more than their scheduled payment
- **Full Payoffs** - the loan is paid off: for example, due to a natural disaster

This is true for all loans, regardless of type of loan, country/region etc. However, the magnitude of each component will depend on *cultural*, *demographic*, *collateral* and *economic* factors.
Structure and Key Features of the Model

Modular Approach:

Projected Speed = Sum of speeds due to

1. Housing Turnover
2. Refinancings - Rate, Cash-Outs and Credit Driven
3. Curtailments
4. Defaults
Overall Housing Turnover Rate

Source: National Association of Realtors, US Census Bureau, Citigroup
Housing Turnover-Related Speeds

- Dominant in high-interest-rate environment
- Strong seasonal component
- Seasoning: brand-new pools tend to prepay more slowly
- Lock-in: higher coupons typically have higher turnover rates
Seasoning Depends on Loan Age and Home Price Appreciation

Age-related Seasoning is a critical dimension of Turnover

However, Seasoning is Modulated by Appreciation in Home Prices
Actual and Projected Home Price Appreciation

Source: Fannie Mae, Freddie Mac, Citigroup

Citigroup Global Markets
We assume that there are several classes of borrowers, ranging from slowest to fastest, each class having its own refi curve.

Source: Citigroup.
Evolution of Population of Mortgagors

The mix of borrowers changes each month, as faster refinancers leave the pool at a faster rate.

Refi Rate = Fraction of pool in class 1 * Refi rate for class 1 + ...
... + Fraction of pool in class k * Refi rate for class k

Source: Citigroup.
Other Aspects of the Refinancing Model

• No consensus on how to calculate the *refinancing incentive*

 - A common approach is to compare PVs of new and old mortgages

 - Another approach: # of months to recoup costs of refinancing

• Mortgage rates used to calculate refi incentive need to depend on loan type eg sub-prime rates much higher than prime rates

• Loan balance is an important factor in determining incentive

• A seasoning curve can be introduced using transient costs of refinancing;

• Reactivity to refinancing opportunities depends on FICO, LTV and other loan features.
A Simple Default Model – Multiple of the SDA Curve

The Standard Default Assumption (SDA Curve)
A Default Model Framework

• Probability of Default = Probability(LTV > Threshold) *Probability (Trigger Event)

• Likelihood of Trigger Events depends on FICO, Debt-to-Income ratio, unemployment rates, payment shock, etc.

![Graph of Default Probability vs Age (years)]
Key Determinants of Trigger Events

<table>
<thead>
<tr>
<th>Source: Freddie Mac.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unemployment or Curtailment of Income</td>
</tr>
<tr>
<td>Illness or Death of Mortgagor</td>
</tr>
<tr>
<td>Excessive Obligation</td>
</tr>
<tr>
<td>Marital Difficulties</td>
</tr>
<tr>
<td>Illness or Death in Family</td>
</tr>
<tr>
<td>Extreme Hardship</td>
</tr>
<tr>
<td>Business Failure</td>
</tr>
<tr>
<td>Property Problem or Casualty Loss</td>
</tr>
<tr>
<td>Inability to Sell or Rent Properties</td>
</tr>
<tr>
<td>Employment Transfer or Military Service</td>
</tr>
<tr>
<td>All other Reasons</td>
</tr>
</tbody>
</table>

Source: Freddie Mac.
Historical Monthly Transition Rates for Sub-Prime Loans

Fixed-Rate Loans

<table>
<thead>
<tr>
<th>From</th>
<th>Non-delinq (%)</th>
<th>Delinquent (%)</th>
<th>Foreclosure (%)</th>
<th>REO (%)</th>
<th>Payoff (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-delinq</td>
<td>97.2</td>
<td>1.0</td>
<td>0.1</td>
<td>0.0</td>
<td>1.7</td>
</tr>
<tr>
<td>Delinquent</td>
<td>10.8</td>
<td>73.5</td>
<td>14.4</td>
<td>0.0</td>
<td>1.3</td>
</tr>
<tr>
<td>Foreclosure</td>
<td>2.9</td>
<td>1.7</td>
<td>88.2</td>
<td>5.2</td>
<td>2.0</td>
</tr>
<tr>
<td>REO</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>84.9</td>
<td>14.7</td>
</tr>
</tbody>
</table>

2/28 Hybrids

<table>
<thead>
<tr>
<th>From</th>
<th>Non-delinq (%)</th>
<th>Delinquent (%)</th>
<th>Foreclosure (%)</th>
<th>REO (%)</th>
<th>Payoff (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-delinq</td>
<td>96.6</td>
<td>1.2</td>
<td>0.1</td>
<td>0.0</td>
<td>2.1</td>
</tr>
<tr>
<td>Delinquent</td>
<td>10.0</td>
<td>72.5</td>
<td>16.0</td>
<td>0.0</td>
<td>1.5</td>
</tr>
<tr>
<td>Foreclosure</td>
<td>3.3</td>
<td>1.8</td>
<td>87.8</td>
<td>4.8</td>
<td>2.3</td>
</tr>
<tr>
<td>REO</td>
<td>0.1</td>
<td>0.0</td>
<td>0.2</td>
<td>83.7</td>
<td>16.0</td>
</tr>
</tbody>
</table>

Source: Citigroup.
Subprime Collateral Default Rates by LTV
Summary and Implications for MBS Valuation

• Modeling of prepayments and defaults as much art as science;

• MBS cashflow generation depends on these models;

• Hence little consensus on valuations, especially for complex MBS derivatives;

• Work by non-practitioners of little value in deciding, say, how much more to pay for a $60,000 average balance Texas pool vs. a $80,000 Illinois pool;

• On a positive note, great employment opportunities for good prepayment modeler;
